Compartilhar
Informação da revista
Compartilhar
Compartilhar
Baixar PDF
Mais opções do artigo
Visitas
272
Case Report
Acesso de texto completo
Uncorrected Proof. Disponível online em 19 de Abril de 2024
The role of allogeneic stem cell transplantation in severe erythropoietic protoporphyria in adults and young adults: timing and modalities
Visitas
272
Camilla Frieria,b,*, Antoine Polic, Marie Balsatd, Flore Sicre de Fontbrunea,
Autor para correspondência
flore.sicre-de-fontbrune@aphp.fr

Corresponding authors.
a Hematology Transplant Unit, Saint-Louis Hospital, APHP, Paris, France
b Hematology Unit, AORN San Giuseppe Moscati Hospital, Avellino, Italy
c CRMR Porphyries, Louis-Mourier Hospital, APHP, Colombes, France
d Service d'Hématologie, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
Este item recebeu
Informação do artigo
Texto Completo
Bibliografia
Baixar PDF
Estatísticas
Figuras (1)
Tabelas (1)
Table 1. Individuals with EPP (erythropoietic protoporphyria) and CEP (congenital erythropoietic porphyria) treated using stem cell transplantation. Patients transplanted after 15 years old are presented in bold.
Texto Completo
Introduction

Porphyrias are caused by enzymatic dysfunctions in the haem biosynthesis metabolic pathway.1

Erythropoietic protoporphyria (EPP), the most common porphyria in children, that occurs in about 1 in 74,300 individuals, is an autosomal disorder, characterized by acute, severe, non-blistering phototoxicity within minutes of exposure by sunlight, and caused by pathogenic variants in the ferrochelatase (FECH) gene.2,3 The reduced enzyme activity results in the accumulation, during erythropoiesis, of protoporphyrin IX (PPIX), which activated by sunlight exposure, generates singlet oxygen and radical reactions, leading to tissue damage and excruciating pain.

PPIX is excreted solely through the hepatobiliary route, and in case of accumulation can aggregate in hepatocytes and precipitate in bile canaliculi, causing severe hepatotoxicity, that may require liver transplantation (LT).4-6 However persistence of PPIX accumulation in the bone marrow causes the recurrence of liver disease in most patients, justifying sequential hematopoietic stem cell transplantation (HSCT) and LT to cure EPP-related hepatopathy.7,8

Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder caused by a deficiency in uroporphyrinogen III synthase (UROS), leading to the accumulation of type I porphyrins during erythropoiesis. The prognosis is poor in severely affected patients due to the destruction of subcutaneous tissues and pancytopenia. Death often occurs early in adulthood.9,10 Since the 1990s, HSCTs have been the therapeutic choice for severe pediatric cases (Table 1).

Table 1.

Individuals with EPP (erythropoietic protoporphyria) and CEP (congenital erythropoietic porphyria) treated using stem cell transplantation. Patients transplanted after 15 years old are presented in bold.

UPN EPP patient  Ref.  Genotype  Age1 (years or months)  Sex(F/M)  Country  Liver Transplant before HSCT2 (yes/no)  No. of liver transplant  Conditioning regimen (HSCT)  RIC/MAC  GvHD prophylaxis  Donor  PPE before/after HSCT  Alive/Dead  Cause of death 
#—-  c.899delTG heterozygous in exon 8 + hypomorphic allele IVS3-48 C/T; p.V300VfsX22 exon8  17 yrs  M  France  Yes,  1  Flu- TBI•  RIC  Tacro-MMF  Haplo  Primary graft failure  Dead 11 yrs post-HSCT  Progression EPP 
#—-  c.490 C>T p.R164W + c.645G>C p. R215P  23 yrs  M  France  yes  3  Flu-Bu-Thymo•  RIC  CsA-MTX  MUD 9/10  389.6 µmol/L0.8µmol/L  Alive 9 yrs post-HSCTRD  —- 
#3  —-  Complete deletion of FECH + IVS3-48C  43 yrs  F  France  no  —-  Flu-Bu-Thymo•  RIC  CsA- MMF  MUD 10/10  295.1 µmol/L1.9 µmol/L  Alive 22 months post-HSCTRD  —- 
*53  Poh-Fitzpatrick MB, 2002  Missense mutation C185>G(Pro62>Arg)  47 yrs  F  USA  no  —-  Bu-Cy-Etoposide  N/A  CsA-PDN  Sibling  N/A  Alive 5 yrs post-HSCTRD  —- 
*McGuire BM, 2005  N/A  N/A  USA  yes  N/A  N/A  N/A  N/A  N/A  Dead 3 mo post-HSCT  Sepsis 
*Rand EB, 2006  Heterozygous low expression IVS3-48C  12 yrs14 yrs  USA  yes  TBI-CyBu-Flu-Cy-Thymo  MAC  N/AN/A  SiblingSibling  N/A  Alive 1 year post-HSCT  —- 
*Wahlin S, 2007  IVS3-48C“null allele” mut. (930G>A)  62 yrsN/A  M  USA  no  —-  Flu-Cy-ThymoFlu-Cy-TBI-Thymo  RICRIC  Tacro-SiroCsA-MTX  MUD 10/10MUD 10/10  N/A  Alive 30 mo post-HSCT  —- 
*Smiers FJ, 2010  Missense mut. FECH  9 yrs  Holland  yes  Flu-Treo-Cy-Thymo-Melphalan- Alemtuzumab4  RIC  MMF-PDN  Haplo  N/A  Dead 8 mo post-HSCT  CMV infection 
*10  Wahlin S, 2010  N/A  57 yrs  M  England  yes  1  N/A  N/A  N/A  N/A  N/A  Dead  Infectious complications 
*11  Cheung CY, 2015  Heterozygous low expression IVS3-48C  21 yrs  M  Hong Kong  no  —-  Flu-Cy-TBI-Thymo  RIC  N/A  MUD 10/10  N/A  Alive 5 months post HSCT  —- 
*12  Windon AL, 2017  [315-348 T>C]  26 yrs  M  USA  yes  1  Flu-Bu-TBI  RIC  Tacro-MTX  MUD10/10  N/A  Alive 8 months post HSCT  —- 
UPN CEP patient  Ref.  Genotype  Age1 (years or months)  Sex(F/M)  Country  Liver Transplant2 (yes/no)  N° of liver transplant  Conditioning regimen (HSCT)  RIC/MAC  GvHD prophylaxis  Donor  Porphyrins before/after HSCT  Alive/Dead  Cause of death 
#—-  c.205G>A; p.A69T homozygous  4 yrs22 yrs  M  France  no  —-  Bu-Cy-Thymo•Flu-Bu-Thymo•  MACRIC  CsA-MTXCsA  MUD 10/10MUD 10/10  816 nmol/L6 nmol/L  Alive 2 yrs post-HSCTRD  —- 
*13  Besnard C, 2020  [c.217T>C, p.(Cys73Arg)][c.560A>C, p.(Gln187Pro)]  13 mo21 mo  France  no  —-  Bu-CyBu-Cy  MACMAC  CsA-MTXCsA-MTX  SiblingSibling  N/A  Alive 24 yrs post-HSCT  —- 
*14  Besnard C, 2020  [c.217T>C, p.(Cys73Arg)][c.217T>C, p.(Cys73Arg)]  26 mo28 mo  France  no  —-  Bu-CyBu-Cy-Thymo  MACMAC  CsACsA  HaploHaplo  N/A  Alive 22 yrs post-HSCT  —- 
*15  Besnard C, 2020  [c.205G>A, p.(Ala69Thr)][c.217T>C, p.(Cys73Arg)]  13 mo  France  no  —-  Bu-Cy-Thymo  MAC  CsA  MUD 10/10  N/A  Alive 3 yrs post-HSCT  —- 
*16  Besnard C, 2020  [c.10C>T, p.(Leu04Phe)][c.673G>A, p.(Gly225Ser)]  4 mo  France  no  —-  Bu-Cy-Thymo  MAC  CsA  MUD10/10  N/A  Dead  Acute liver failure 
*17  Besnard C, 2020  [c.217T>C, p.(Cys73Arg)][c.634T>C, p.(Ser212Pro)]  7 mo40 mo  France  no  —-  Flu-Bu-ThymoFlu-Bu-Thymo  MACMAC  CsA- MMFCsA- MMF  MUD 10/10MUD 10/10  N/A  Alive 3 yrs post-HSCT  —- 
*18  Besnard C, 2020  [c.205G>A, p.(Ala69Thr)][c.244G>T, p.(Val82Phe)]  8 mo  France  no  —-  Flu-Bu-Thymo  MAC  CsA- MMF  MUD 10/10  N/A  Dead  Hepatic aGvHD; TAM 
*19  Kauffman L, 1991  N/A  11 yrs  England  no  —-  Bu-Cy  MAC  CsA  Sibling  N/A  Dead eight months post-HSCT  CMV infection 
*20  ThomasC, 1996  N/A  22 mo30 mo  France  no  —-  Bu-CyBu-Cy  MACMAC  CsA-MTXCsA-MTX  Sibling  N/A  Alive 1 year post-HSCTRD  —- 
*21  Zix-Kieffer I, 1996  N/A  4 yrs  France  N/A  N/A  N/A  N/A  N/A  Sibling  N/A  Alive 10 months post-HSCTRD  —- 
*22  Tezcan I, 1998  URO synthase missense mutation G188R  4.5 yrs  Turkey  no  —-  Bu-Cy  MAC  CsA  Sibling  N/A  Alive 35 months post-HSCTRD  —- 
*23  Shaw PH,2001  N/A  2 yrs  USA  no  —-  Bu-Cy  MAC  CsA  Sibling  N/A  Alive 15 months post-HSCTRD  —- 
*24  Harada FA,2001  C73R  2 yrs  USA  no  —-  N/A  N/A  N/A  MUD10/10  N/A  Alive 16 months post-HSCTRD  —- 
*25  Dupuis-Girod S, 2005  Homozygous missense mutation A69T  4 yrs  France  no  —-  Bu-Cy-Thymo  MAC  CsA-MTX  MUD10/10  N/A  Alive 3 yrs post- HSCTRD  —- 
*26  Dupuis-Girod S, 2005  Homozygous missense mutation A69T  4 yrs  France  no  —-  Bu-Cy-Thymo  MAC  CsA-MTX  MUD10/10  N/A  Alive 2 yrs post-HSCTRD  —- 
*27  Phillips JD, 2007  GATA 1R219W  3 yrs  USA  no  —  N/A  N/A  N/A  MUD10/10  N/A  Alive 2 yrs post-HSCTRD  —- 
*28  Taibjee SM, 2007  N/A  7 yrs  England  no  —-  Flu-Bu-Cy  MAC  CsA  Sibling  N/A  Alive 3 yrs post- HSCTRD but cGvHD  —- 
*29  Faraci M,2008  Homozygous URO synthase 217T/C Cys73Arg  12 yrs  Italy  no  —-  Bu-Thiotepa-Cy- Thymo  MAC  CsA-MTX  MUD10/10  N/A  Alive 7 yrs post-HSCTRD  —- 
*30  Lebreuilly-Sohyer I, 2010  p.Cys73Argp.Ala69Thr  18 mo  France  no  —-  N/A  N/A  N/A  MUD 10/10  N/A  Alive 2 yrs post-HSCTRD  —- 
*31  Singh S, 2012  UROS gene(not spec)  14 yrs  India  no  —-  Flu-Cy- Thymo  RIC  CsA-MTX  Sibling  N/A  Alive 4 yrs post-HSCTRD  —- 
*32  Martinez Peinado C, 2013  C73R/C73R(UROS gene)  7 mo  Spain  no  —-  Bu-Cy-Thymo  MAC  CsA-MTX  MUD 10/10  N/A  Alive 1 yrs post-HSCTRD  —- 
*33  Karakurt N, 2015  UROS geneGATA-1  5 yrs  Turkey  no  —-  Bu-Cy  MAC  CsA  Sibling  N/A  Alive 3 yrs post-HSCTRD  —- 

UPN: unique patient number; Ref.: reference CsA: cyclosporin; F: female; M: male; MMF: mycophenolate mofetil; Tacro: tacrolimus; MTX: methotrexate; PDN: prednisone; N/A: not available; Flu: fludarabine; Bu: busulfan; Thymo: thymoglobulin; Cy: cyclophosphamide; TBI: Total body irradiation; MUD: matched-unrelated donor; Siro: sirolimus; Haplo: haplo-identical; RD = resolution of disease manifestations; aGvHD: acute graft-versus-host disease; cGvHD: chronic graft-versus-host disease; TAM: transplant associated microangiopathy; RIC: reduced intensity conditioning, MAC: myeloablative conditioning; yrs: years; mo: months

#

Our patients are in green

patients from literature; 1: age at HSCT; 2: liver transplant was performed before HSCT; • Conditioning regimen doses of our patients: Flu-TBI: fludarabine (30 mg/m2/day on days -5, -4, -3) and TBI 2 Gy; Bu-Flu- Thymo: fludarabine (30 mg/m2/day on days -5, -4, -3, -2 and -1), busulfan (3.2 mg/kg on days -4 and -3) and thymoglobulin (5 mg/kg on days -2 and -1)

3: Patient #5 underwent HSCT for AML; 4: Patient *9, because of anaphylactic shock after thymo, received melphalan and alemtuzumab in addition.

Ref: Poh-Fitzpatrick MB, Wang X, Anderson KE et al. Erythropoietic protoporphyria: altered phenotype after bone marrow transplantation for myelogenous leukemia in a patient heteroallelic for ferrochelatase gene mutations. J Am Acad Dermatol. 2002; 46: 861–866.

McGuire BM, Bonkovsky HL, Carithers Jr RL et al. Liver transplantation for erythropoietic protoporphyria liver disease. Liver Transpl 2005; 11: 1590–1596.

Rand EB, Bunin N, Cochran W et al. Sequential liver and bone marrow transplant- ation for treatment of erythropoietic protoporphyria. Pedia- trics 2006; 118: e1896–e1899.

Smiers FJ, Van de Vijver E, Delsing BJ, et al. Delayed immune recovery following sequential orthotopic liver transplantation and haploidentical stem cell transplantation in erythropoietic protoporphyria. Pediatr Transplant. 2010 Jun;14(4):471-5. doi: 10.1111/j.1399-3046.2009.01233.x. Epub 2009 Sep 7. PMID: 19735434.

Cheung CY, Tam S, Lam CWet al. Allogeneic haematopoietic stem cell transplantation for erythropoietic protoporphyria: a cautionary note. Blood Cells Mol Dis. 2015 Mar;54(3):266-7. doi: 10.1016/j.bcmd.2014.11.009. Epub 2014 Nov 26. PMID: 25488614.

Windon AL, Tondon R, Singh et al. Erythropoietic protoporphyria in an adult with sequential liver and hematopoietic stem cell transplantation: A case report. Am J Transplant. 2018 Mar;18(3):745-749. doi: 10.1111/ajt.14581. Epub 2017 Dec 9. PMID: 29116687.

Besnard C, Schmitt C, Galmiche-Rolland L, et al. Bone Marrow Transplantation in Congenital Erythropoietic Porphyria: Sustained Efficacy but Unexpected Liver Dysfunction. Biol Blood Marrow Transplant. 2020 Apr;26(4):704-711. doi: 10.1016/j.bbmt.2019.12.005. Epub 2019 Dec 14. PMID:3184356.

Thomas C,Ged C,Nordmann Y,et al.Correction of congenital erythropoietic porphyria by bone marrow transplantation. J Pediatr. 1996;129:453–456.

Zix-Kieffer I, Langer B, Eyer D et al. Successful cord blood stem cell transplantation for congenital erythropoietic porphyria (Gunther's disease).Bone Marrow Transplant. 1996;18:217–220.

Tezcan I, Xu W, Gurgey A, et al. Congenital erythropoietic porphyria suc- cessfully treated by allogeneic bone marrow transplantation. Blood.1998;92:4053–4058.

ShawPH, Mancin iAJ, McConnell JP et al. Treatment of congenital erythropoietic porphyria in children by allogeneic stem cell transplantation: a case report and review of the literature. Bone Marrow Transplant. 2001;27:101–105.

Phillips JD, Steensma DP, Pulsipher MA, et al. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood. 2007; 109:2618–2621.

Taibjee SM, Stevenson OE, Abdullah A, et al. Allogeneic bone marrow transplantation in a 7-year-old girl with congenital erythropoietic porphyria: a treatment dilemma. Br J Dermatol. 2007;156:567–571.

Faraci M, Morreale G, Boeri E, et al. Unrelated HSCT in an adolescent affected by congenital erythropoietic porphyria. Pediatr Transplant. 2008;12:117–120.

Lebreuilly-Sohyer I, Morice A, Acher A, et al. Congenital erythropoietic porphyria treated by haematopoietic stem cell allograft. Ann Dermatol Venereol. 2010;137:635–639. [in French].

Singh S, Khanna N, Kumar L. Bone marrow transplantation improves symptoms of congenital erythropoietic porphyria even when done post puberty. Indian J Dermatol Venereol Leprol. 2012;78:108–111.

Martinez Peinado C, Diaz de Heredia C, To-Figueras J, et al. Successful treatment of congenital erythropoietic porphyria using matched unre- ated hematopoietic stem cell transplantation. Pediatr Dermatol. 2013;30:484–489.

Karakurt N, Tavil B, Azik F, et al. Successful hematopoietic stem cell transplantation in a child with congenital erythropoietic porphyria due to a mutation in GATA-1. Pediatr Transplant. 2015;19:803–805.

Here, we present four patients with either EPP or CEP who underwent HSCT after the age of fifteen.

Clinical cases

Patient #1 was a 17-year-old EPP-patient who underwent a LT from his father in 2001, in the context of EPP-related hepatopathy. After five months, the patient underwent HSCT from the same haploidentical donor. The conditioning regimen was based on fludarabine and total body irradiation (TBI 2cGY). HSCT was complicated by primary graft failure. He continued transfusions and ferrochelating therapy to prevent hemochromatosis. He died 11 years later.

Patient #2, a 32-year-old man diagnosed with EPP at the age of three, underwent a first LT in 2009 for liver cirrhosis. In the following years, he presented a progressive worsening of liver function and a liver biopsy in 2013 confirmed the recurrence of the initial disease (micro-nodular cirrhosis, with a very strong fibrotic component and pigment overload typical of PPIX deposition).

He therefore underwent a second LT, followed by a HSCT, to prevent EPP recurrence on the graft. The patient underwent a non-myeloablative matched-unrelated transplant after conditioning with fludarabine, busulfan and thymoglobulin. He demonstrated excellent neutrophil engraftment on day +19. Peripheral blood donor chimerism was 100% by day +30. He did not have any signs of GvHD or infectious complications. His blood counts were normal. Free erythrocyte PPIX levels were normal and he did not experience any photosensitivity. Nine years after HSCT, he is alive but he underwent a third LT for arterial stenosis and severe infectious complications on second liver transplant.

Patient #3 was a woman diagnosed with EPP at the age of five, which only presented regular mild episodes of photosensitivity. At the age of 40, she experienced a first severe cholestatic hepatitis episode and was treated with ursodeoxycholic acid for six months. The cholestasis resolved and PPIX levels dropped to pre-hepatitis levels.

Eight months later, a second severe episode of cholestatic hepatitis occurred (bilirubin up to 500 μmol/L), requiring prolonged hospitalization in an intensive care unit. Hydroxycarbamide, red blood transfusions and plasma exchanges contributed to suppress endogenous hematopoiesis and the production of porphyrins, allowing full recovery. Liver biopsy showed a parenchyma of respected architecture, with portal fibrosis and discrete steatosis, and pigment overload typical of PPIX deposition.

She was referred for an allogeneic HSCT from a 10/10 HLA-matched unrelated donor. Conditioning regimen, preceded by desensitization protocol by plasma exchanges, intravenous immunoglobulin and rituximab (donor specific antibody higher than 12,000 mean fluorescence intensity (MFI) by single antigen bead assay), consisted of fludarabine, busulfan and thymoglobulin.

Neutrophil engraftment occurred on day +24 and peripheral blood donor chimerism was 94.2% by day +30 and 96% by day +100. There were no GvHD or infectious complications. Free erythrocyte protoporphyrin and the plasma-free protoporphyrin were repeated and dropped to normal levels at day 28 after HSCT (Figure 1). She had complete resolution of photosensitivity and she largely returned to a normal life. With 22 months of follow up, the patient is fine, with only mild persistent thrombocytopenia.

Figure 1.

Evolution of patient #3 total erythrocytes porphyrins level. Green area indicates the normal range. HSCT: hematopoietic stem cell transplantation.

(0,15MB).

Patient #4 was diagnosed with CEP at the age of two, mostly with skin involvement. At four years old, he underwent a first matched-unrelated allogeneic HSCT after a myeloablative conditioning regimen. Post-transplantation, his blood count was normal, he did not show any signs of GvHD or infectious complications and he showed a marked improvement in skin lesions. However, after 10 years, he presented with moderate cytopenia, new erosive, bullous skin lesions with scleroderma areas and functional joint impotence. Erythrocyte porphyrins increased to a very high level (24 µmol/L) in red blood cells (n <1.9). Peripheral blood chimerism was 76% recipient.

At the age of 22, he underwent a second HSCT from a matched-unrelated donor after a reduce intensity conditioning regimen. He achieved neutrophil engraftment on day +18 and a full donor chimerism. No acute GvHD occurred. Two years after HSCT, the patient leads a normal life, with normal protoporphyrin levels.

Discussion and conclusions

EPP and CEP have great clinical variability related to heterogenous residual enzymatic activities; while numerous therapies have been applied, HSCT is the only curative treatment for severe forms of the diseases. From 1991, when the first HSCT was performed for CEP, there have been about thirty reports of, mainly pediatric, patients (Table 1).

The four cases we present may expand the already known experience about HSCT in porphyrias, to young adults and adults. Two patients presented the resolution of disease manifestations achieving normal protoporphyrin levels, one had primary graft failure (conditioning regimen was retrospectively not sufficient for engraftment) and the last experienced late secondary graft failure but was rescued by thae second transplant. None experienced acute nor chronic GvHD.

HSCT is certainly feasible, from any stem cell source or any type of donor, when the disease is severe. In the past, a myeloablative conditioning regimen was preferred, however engraftment seems to not be lower with non-myeloablative conditioning and minimization of toxicity is a priority in patients with liver failure and non-malignant disease. Hepatic involvement requires careful pre-transplant evaluation, including liver biopsy.

From a metabolic point of view, the efficacy of HSCT depends on the initial level of toxic porphyrin production and on the level of myeloid chimerism reached, i.e., the higher the initial porphyrin production, the lower the level of residual native erythropoietic cells must be for the patient to be asymptomatic. In patient #4, a 76% recipient chimerism was associated with sufficient erythrocyte porphyrins production (3.529 nmol/mmol creatinine) to induce severe symptomatology. It is therefore important to target full myeloid chimerism and normal erythrocyte porphyrins, especially in CEP patients.

In conclusion, HSCT should be evaluated for high-risk adults and young adult patients, with EPP and liver involvement. If possible HSCT must be perform before LT to prevent long-term complications inherent to solid organ transplantation; after LT it is necessary to prevent the inevitable relapse of the disease.

References
[1]
R. Dawe.
An overview of the cutaneous porphyrias.
[2]
APF. Erythropoietic protoporphyria (EPP) and X-Linked Porphyria (XLP). American Porphyria Foundation (APF). Accessed October 14, 2022.
[3]
M. Balwani.
Erythropoietic protoporphyria and X-linked protoporphyria: pathophysiology, genetics, clinical manifestations, and management.
Mol Genet Metab, 128 (2019), pp. 298-303
[4]
JR Bloomer.
The liver in protoporphyria.
Hepatology, 8 (1988), pp. 402-407
[5]
JR Bloomer.
Hepatic protoporphyrin metabolism in patients with advanced protoporphyric liver disease.
Yale J Biol Med, 70 (1997), pp. 323-330
[6]
S Wahlin, J Aschan, M Bjornstedt, U Broome, P. Harper.
Curative bone marrow transplantation in erythropoietic protoporphyria after reversal of severe cholestasis.
J Hepatol, 46 (2007), pp. 174-179
[7]
BM McGuire, HL Bonkovsky, RL Carithers Jr, RT Chung, LI Goldstein, JR Lake, et al.
Liver transplantation for erythropoietic protoporphyria liver disease.
Liver Transpl, 11 (2005), pp. 1590-1596
[8]
S Wahlin, P Harper.
The role for BMT in erythropoietic protoporphyria.
Bone Marrow Transplant, 45 (2010), pp. 393-394
[9]
S Dupuis-Girod, V Akkari, C Ged, et al.
Successful match-unrelated donor bone marrow transplantation for congenital erythropoietic porphyria Gunther disease.
Eur J Pediatr, 164 (2005), pp. 104-107
[10]
FA Harada, TA Shwayder, RJ Desnick, HW. Lim.
Treatment of severe congenital erythropoietic porphyria by bone marrow transplantation.
J Am Acad Dermatol, 45 (2001), pp. 279-282
Copyright © 2024. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular
Idiomas
Hematology, Transfusion and Cell Therapy
Opções de artigo
Ferramentas