Compartilhar
Informação da revista
Vol. 46. Núm. S5.
Páginas S246-S257 (novembro 2024)
Visitas
1236
Vol. 46. Núm. S5.
Páginas S246-S257 (novembro 2024)
Review article
Acesso de texto completo
Hemolytic disease of the fetus and newborn—a perspective of immunohematology
Visitas
1236
Mirelen Moura de Oliveira Rodriguesa,b, Denise Mattosb, Silvana Almeidaa, Marilu Fiegenbauma,
Autor para correspondência
mariluf@ufcspa.edu.br

Corresponding author at: Sarmento Leite 245/403, Centro Histórico, CEP 90050170 Porto Alegre, RS, Brazil.
a Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
b Grupo Hospitalar Conceição (GHC), Serviço de Hemoterapia, Porto Alegre, RS, Brazil
Este item recebeu
Informação do artigo
Resume
Texto Completo
Bibliografia
Baixar PDF
Estatísticas
Figuras (2)
Tabelas (4)
Table 1. RBC alloantibodies in case-report studies.
Tabelas
Table 2. Frequency of RBC alloantibodies in prevalence studies.
Tabelas
Table 3. Studies with alloimmunized pregnant women, HDFN, and intervention.
Tabelas
Table 4. RBC antibodies present in maternal plasma.
Tabelas
Mostrar maisMostrar menos
Suplemento especial
Este artigo faz parte de:
Vol. 46. Núm S5
Mais dados
Abstract
Background

Hemolytic disease of the fetus and newborn is a public health problem caused by maternal-fetal incompatibility; no prophylaxis is available for most alloantibodies that induce this disease. This study reviews the literature regarding which antibodies are the most common in maternal plasma and which were involved in hemolytic disease of the fetus and newborn.

Method

Seventy-five studies were included in this review using a systematic search. Two independent authors identified studies of interest from the PubMed and SciELO databases.

Main results

Forty-four case reports were identified, of which 11 babies evolved to death. From 17 prevalence studies, the alloimmunization rate was 0.17 % with 161 babies receiving intrauterine transfusions and 23 receiving transfusions after birth. From 28 studies with alloimmunized pregnant women (7616 women), 455 babies received intrauterine transfusions and 21 received transfusions after birth.

Conclusion

Rh, Kell, and MNS were the commonest blood systems involved. The geographical distribution of studies shows that as these figures vary between continents, more studies should be performed in different countries. Investing in early diagnosis is important to manage the risks and complications of hemolytic disease of the fetus and newborn.

Keywords:
Hemolytic disease of the fetus and newborn
Alloimmunization
Immunohematology
Texto Completo
Introduction

Hemolytic disease of the fetus and newborn (HDFN) is caused by maternal-fetal incompatibility when the mother has an antibody (IgG subclass) against an antigen expressed on the fetal red blood cell (RBC) and this antibody crosses the placenta.1 Alloantibodies usually form after exposure to non-self-antigens due to a transfusion or transplantation, or when a pregnancy results in sensitization creating antibodies against RBC antigens.2 HDFN has different degrees of complications that can be classified as mild, moderate, or severe. The physiopathology results in various complications such as anemia, aplastic anemia, hyperbilirubinemia, fetal hydrops, kernicterus, and death.3

Different maternal alloantibodies can cause HDFN, the most common are anti-D and other Rh antibodies, and Kell.1 However, antibodies against high prevalence antigens can also cause severe HDFN, as in the case report described by Levitt et al.4 The administration of prophylactic anti-D immunoglobulin in RhD negative women after delivery of a RhD positive child significantly reduced the incidence of HDFN related to anti-D in high-income countries after the 1960s.1,5 However, in less developed countries, HDFN still is a significant problem.6 Pregnant women classified as RhD positive for the D variant (partial D phenotype) who do not receive immunoglobulin prophylaxis may develop anti-D antibodies.7

The International Society of Blood Transfusion (ISBT) recognizes 43 different blood group systems and 378 RBC antigens of which 345 are in the blood group system.8 No prophylaxis is available for antibodies from other blood groups.1 Thus, identifying the antibodies that cause HDFN and the most common alloantibodies in populations could direct new research and the development of alloantibody prophylaxis. In addition, it is important to monitor fetuses and babies with any chance of developing HDFN and correctly identify the alloantibodies involved in HDFN. This study reviews the literature regarding which antibodies are the most common in maternal plasma and which are involved in hemolytic disease of the fetus and newborn.

Material and methodsEligibility criteria and literature search

A systematic search performed by two independent authors extracted studies from the MEDLINE (accessed by PubMed) and Scientific Electronic Library Online (SciELO) databases. The terms used in the search were ‘hemolytic disease of the fetus and newborn’, ‘alloimmunization’, ‘isoimmunization’, ‘hydrops fetalis’, ‘fetal hemolytic anemia’ using the functions ‘AND’ and ‘OR’. Additionally, the exact words and synonyms were used as text words for searches in titles and abstracts. The search was restricted to studies published between 2013 and 2023. A total of 1690 results were found.

After reading the title and abstract, 1589 studies were excluded. After reading these papers, 75 were selected for data collection. To be considered eligible, case reports should present at least one case of HDFN (presence of alloantibodies causing anemia) identified by the study authors. For other study types (cross-sectional, case-control, cohort), the presence of maternal alloimmunization was accepted even if the study did not mention the clinical outcome of the babies or the development of HDFN but only mentioned the risk of HDFN. Case reports without HDFN were excluded even if alloimmunization was present. Case-control, cross-sectional and cohort studies were excluded when alloantibodies were not identified and when the study was only about phenotyping and/or genotyping pregnant women without alloimmunization.

Results

Table 1 shows the data collected from case-report studies,4,7,9–37Table 2 presents data from prevalence studies,3,5,6,38–51 and Table 3 presents data from alloimmunized pregnant women.1,11,52–77 A total of 75 studies were reviewed, 31 case reports, 19 cohorts, 22 cross-sectional, and three case-control studies. One study was classified both as a case report and a review and was included in both Tables 1 and 3.

Table 1.

RBC alloantibodies in case-report studies.

CaseFirst author, yearCountryPregnant womanInfant
PPrevious histories of antibody screeningAntibodyTiterDATHighest Bil  Lowest Hb  Major complaintInterventionoutcome 
(mg/dL)  (g/dL)  RBCOther   
    Intrau Tr  Ex tr  Tr     
Usman et al.9Malaysia  Na  anti-E  na  23.45  6.2  jaundice, severe anemia, thrombocytopenia    1*    IVIG, photo  alive 
  Na  anti-E  na  na  10.2  jaundice, mild anemia      IVIG, photo, 1 fresh frozen plasma transfusion  alive 
Pitan et al.10  Ireland    Yes  anti-S  64  9.59  5.23  hepatosplenomegaly, hypocalcemia      IVIG, photo, calcium infusion, and platelet transfusion  alive 
Unterscheider et al.27  Ireland  P3  yes  anti-K  512  na  na  Na  severe anemia        death 
Yasuda et al., 201411  Japan    Yes  anti-M  –  17.00  6.7  severe anemia      IVIG, photo, corticosteroid  alive 
Reddy and Kohan12  Australia    Yes  anti-S  na  11.70  8.1        IVIG, photo, platelet transfusion  alive 
Arora et al.13IndiaT1  Na  anti-M32  –  na  Na  jaundice, prolonged anemia      photo  alive 
T2  Na  32  –  na  Na  jaundice, prolonged anemia      photo  alive 
Houston et al.28CanadaP4  No  anti-D, -C  1096  na  na  Na  hydrops fetalis        death 
10  P5  Yes  anti-D, -C  2048 (anti-D), 4 (anti-C)  na  180  18  hydrops fetalis, severe anemia      photo  alive 
11  Kamei et al.29  Japan  P5  Yes  anti-D  512  Na  11.2        photo  alive 
12  Zineb et al.30  Maroc    Yes  anti-D  na  na  na  hepatomegaly, hydrops fetalis        death 
13  Mittal et al.14  India    Na  anti-Jka  64  20.50  Na          photo  alive 
14  Mattaloni et al., 201715  Brazil    Yes  anti-Ku  na  na  Na  na  jaundice, mild anemia        photo  alive 
15  DeMoss et al.16  USA    Yes  anti-K, anti-C, anti-e  1024 (anti-K)  + (anti-K and anti-C)  13.19      photo  alive 
16  Li and Blaustein17  USA    Yes  anti-D and anti-G  na  4.70  4.8  jaundice  3*  IVIG, photo  alive 
17  Yousuf et al.88  Malaysia    Yes  anti-D, anti-G, anti-C  512  na  13.59  9.7  mild anemia        photo  alive 
18  Venkataraman and Yusuf19CanadaP8  Yesanti-SARA  na  na  na  na  severe anemia        alive 
19  P10  anti-SARA  na  17.00  na  jaundice      IVIG, photo, ventilatory support  alive 
20  Quantock et al.7AustraliaP1  Na  anti-D, anti-E, anti-A  na  16.90  na  jaundice        photo  alive 
21  P2  Na  anti-D  256  15.14  na  mild anemia        IVIG, photo  alive 
22  Rauch et al.20  Germany    No  anti-Rd  256  na  severe anemia    ventilatory support,  alive 
23  Hubinont et al.21BelgiumP1  Na  anti-M  256  na  na  na  hydrops fetalis          IUD 
24  P2  Yes  anti-M  na  na  na  na  hydrops fetalis          IUD 
25  P3  Yes  anti-M  na  na  na  na  severe fetal anemia        IUD 
26  P4  Yes  anti-M  2048  na  na  10.9  mild anemia        photo  alive 
27  Colpo et al.31ItalyP2  No  anti-D  2048  na  na  na  hydrops fetalis          IUD 
28  P3  Yes  anti-D  2048  na  na  na  spontaneous abortion          IUD 
29  P4  Yes  anti-D  4096  13.68  5.7  severe fetal anemia  IVIG, photo  alive 
30  Bullock et al.22  UK    Na  anti-H  4000  2104.00  19.0          photo  alive 
31  Millard et al.23  Australia    Na  anti-ATML  na  na  4.5  cardiac failure, pleural effusion, generalized edema      alive 
32  Levitt et al.4  USA    Yes  anti-Ge3  256  6.60  6.1  mild intrauterine anemia        alive 
33  Lawicki et al.24USAcase 1  Yes  anti-Jk3  128  7.00  11.4          IVIG  alive 
34  case 2  Yes  anti-Jk3, anti-E  16  9.60  na          photo  alive 
35  Turley et al.25CanadaP2  No  anti-D  na  na  na  na            alive 
36  P3  Yes  anti-D  na  na  na  na            IUD 
37  P4  Yes  anti-D  32  11.52  13    1*      alive 
38  Lee et al.32  UK  P2  No  anti-E  7.84  6.4  severe anemia, moderate hypoxic-ischemic encephalopathy, jaundice, hepatomegaly.      photo  alive 
39  Mandal et al.37  India    Yes  Anti-E, anti-Jka  8 (anti-E) and 2 (anti-Jka)  na  na  na  respiratory distress          alive 
40  Novoselac et al.26  Croatia    Yes  anti-K  32  6.55  na  severe anemia, jaundice      photo  alive 
41  Riis et al.33  Denmark  P1  No  anti-D  16,000  27.01  7.25  severe anemia, jaundice, hepatosplenomegaly      photo  alive 
42  Souabni et al.34  Maroc  P3  Yes  anti-D  na  na  na  5.8  severe anemia          death 
43  Moreno et al.35  Spain    No  anti-Kpa  16  na  4.2  severe anemia, hydrops fetalis        death 
44  Fives et al.36  USA    No  anti-Goa  na  18.8  6.7  jaundice      photo  alive 

DAT, direct antiglobulin test; Bil, bilirubin; Hb, hemoglobin; photo, phototherapy; Intrau Tr, intrauterine transfusion; Ex tr, exchange transfusion; Tr, transfusion; IVIG, intravenous immunoglobulin; +, positive; -, negative; IUD, intrauterine death; P, pregnancy; T, Twin; np, not performed;.

double volume exchange transfusion; na, not available.

Table 2.

Frequency of RBC alloantibodies in prevalence studies.

StudyStudy typeCountryTotal pregnancies (n)Presence of alloantibodyHDFN (n)InterventionbOutcome 
Pregnancy (n)  (%)  IUT  Ex Tr  Tr  Photo   
Altuntas et al.38  CS  Turkey  4840  65  1.34  30      30  3 hydrops fetalis, 1 death 
Hassan et al. a39  CS  Malaysia  5163  30  0.58  14    14  1 hydrops fetalis 
Velkova40  CS  Macedonia  22,009  205  0.93  48          2 deaths 
Mbalibulha et al.47  CS  Uganda  726  88  12.12             
Krstic et al.41  CS  Croatia  102,982  184  0.18       
Sidhu et al.42  CS  India  750  15  2.00             
Girault et al.48  CS  France  113  78  69.00  78  78         
Peeters et al.43  CS  Belgium  9419  46  0.49  25      1 death 
Zonneveld et al.6  CS  Suriname  214  19  8.87  11       
Chatziantoniou et al.5  CS  UK  46,182  130  0.28  65    19  8 IUD 
Slootweg et al.44  cohort  Netherlands  3200,000  1026  0.000003  49  48      3 IUD 
Kahar45  CS  India  1960  20  1.02             
Matteocci et al.46  CS  Italy  28,089  3000  11.00  81           
Moinuddin et al.49  CS  USA  4545  34  0.74             
Rahimi-Levene et al.3  CS  Israel  90,948  900  0.99  17  13    1 death 
Özköse et al.50  CC  Turkey  37,344  153  0.40  49  23  45  4 IUD 
Ali et al.51  CS  Sudan  130  14  10.77             
total      3555,414  6007  0.17  470  161  23  23  115   

%, rate of n pregnant with antibody;.

CS: Cross-sectional; CC: Case-control; IUT: intrauterine transfusion; Ex tr: exchange transfusion; Tr: transfusion; Photo: phototherapy; IUD: intrauterine death.

a

9 cases of intravenous immunoglobulin.

b

Some cases of HDFN have not received clinical intervention or the study does not mention the intervention.

Table 3.

Studies with alloimmunized pregnant women, HDFN, and intervention.

      Presence of alloantibody  Intervention
Study  Study type  Country  n pregnant  (%)  n HDFN  IUT  Ex Tr  Tr  Photo 
Rath et al.59  cohort  Netherlands  393  100  393  70    93   
Smits-Wintjens et al.60  cohort  Netherlands  347  100  347  240  134  255   
Tiblad et al.61  cohort  Sweden  290  100  108  37  46    94 
Doyle et al.52  cross sectional  Ireland  1106  100  62  62       
Kapur et al.53  cross sectional  Netherlands  70  100           
Yasuda et al.11  review  Japan  34  100  34         
Verduin et al.54  cohort  Netherlands  260  100  287  287       
Garabedian et al.63  cohort  France  81  100  81  81  28  42  70 
Garabedian et al.62  cohort  France  77  100  77  77       
Philip et al.89  cross sectional  India  42  100  42  42    13   
Kristinsdóttir et al.55  cross sectional  Iceland  375  100  179      179 
Stetson et al.56  cross sectional  USA  146  100       
Sonneveld et al.57  cohort  Netherlands  679  100  37      13  24 
Zwiers et al.1  case-control  Netherlands  1326  100  232         
Phung et al.58  cross sectional  France  106  100  106  106       
Healsmith et al.65  cohort  Australia  115  100  59  11    59 
Sánchez-Durán et al.66  cohort  Spain  337  100  103  45  24  21  38 
Snelgrove et al.67  cohort  Canada  232  100  232  232      131 
Crawford et al.68  cohort  UK  11  100  11  11       
Gudlaugsson et al.69  cohort  Iceland  130  100  35  13  32 
Lieberman et al.70  cohort  Canada  128  100  21  17 
Şavkli et al.71  cohort  Turkey  42  100  42  42       
Liu et al.72  cohort  Sweden  1079  100  157  87  52    216 
Maisonneuve et al.73  case-control  France  41  100  41  41     
Lee et al.74  cohort  USA  36  100  35  36       
Vlachodimitropoulou et al.75  cohort  Canada  128  100  128  128  12  26  54 
Ghesquière et al.76  cohort  France  207  100  126  105  53  92  133 
Kureba et al.77  cross sectional  Ethiopia  98  100  21  21  15  20 
Total      7916    2996  1768  397  573  1071 

Results extracted from case reports included 47 cases with antibodies, but three cases were excluded because the babies did not show any signs of HDFN, one with anti-H,22 and two with anti-Jk3.24 Of the 44 cases with HDFN, 26 women had already been screened for antibodies prior to the reported pregnancy. The antibodies implicated as causing HDFN were anti-D (10 cases in isolation and 5 with associated antibodies), anti-E (3 cases in isolation and 3 cases with associated antibodies), anti-M (6 cases), anti-Jk3 (1 in isolation and 1 with associated antibodies), anti-Jka (1 in isolation and 1 with associated antibodies), anti-G (2 cases with associated antibodies), anti-K (2 in isolation and 1 with associated antibodies), anti-S (2 cases), anti-SARA (2 cases), anti-C (4 cases with associated antibodies), anti-e and anti-A (1 case with associated antibodies each) and anti-Ku, anti-Goa, anti-Ge3, anti-Kpa, anti-Rd, anti-ATML and anti-H with each one in isolation. The most observed complications reported were severe anemia (13 cases), mild anemia (6 cases), and jaundice (12 cases). Of the 44 cases, 11 evolved to death. Of the anti-D cases, two women were D partial7,25 responsible for 5 cases of anti-D HDFN. A total of 20 IUTs were performed in 9 fetuses, 16 exchange transfusions in 12 babies and 33 transfusions in 14 babies. Phototherapy were necessary as treatment for 25 patients.

Table 2 presents 17 prevalence studies (15 cross-sectional, 1 cohort, and 1 case-control). A total of 3555,414 pregnant women were evaluated; of these 6007 women presented alloantibodies in the gestational period, corresponding to a 0.17 % alloimmunization rate. HDFN was present in 470 babies, of these 161 babies received at least one IUT, 23 received transfusions, 23 performed exchange transfusions, and 115 received phototherapy. Four babies had hydrops fetalis, and 20 evolved to death (15 intrauterine deaths).

For alloimmunized pregnant women, 28 studies were included (1 review, 2 case-control, 7 cross-sectional, and 18 cohort). A total of 7911 women presented alloantibodies in the gestational period. Almost one third (2996) of the babies had HDFN and of these 1768 babies received at least one IUT, 397 received exchange transfusions, 573 received transfusions, and 1071 received phototherapy.

Details of the single or multiple maternal antibodies identified are reported in Table 4; multiple antibodies were found in 1791 cases. Nineteen different alloantibodies which cause HDFN were cited in case reports. ABO incompatibility was found in 3307 cases.

Table 4.

RBC antibodies present in maternal plasma.

AntibodyCase report (Table 1Prevalence studies (Table 2Alloimmunized pregnant women (Table 3Antibody  Case report (Table 1Prevalence studies (Table 2Alloimmunized pregnant women (Table 3
 
Anti-D  11  821  3366  anti-C, -G; -K     
Anti-D, -C  24  354  anti-c    85  543 
anti-D, -c      anti-c; -K     
anti-D, -E    45  anti-c; -K; -Jka; -M     
anti-D, -C, -E    31  anti-c; -Lea     
anti-D, -E; -K    anti-cE      12 
anti-D, -Jka      anti-cE; -Jka     
anti-D; -S      anti-ce     
anti-D; -Lea    anti-Ce     
b anti-D and multiple antibodies    36  104  anti-c, -C     
anti-D, -C, -G  anti-c, -Cw     
anti-D, -G    anti-c; -Jkb     
anti-D, -E; -A      anti-c, -E; -Fya     
anti-D, -Ce    13    anti-c, - E; -Jka   
anti-D, -cE      anti-c, -E; -K     
anti-D, -Cc      anti-c; -Fya; -K   
anti-D; -K      anti-c, -E; -Lua     
anti-D; -Cce      anti-c; -s     
anti-D, -C; -Jka      anti-c; -Fya   
anti-D; -K      anti-c, -E; -Leb; -M     
anti-D, -C; -M      anti-c; -S     
anti-D, -C; -Kpa      anti-c; -Jka   
anti-D; -Fya      anti-E  182  1130 
anti-D, -C; -Jkb      anti-E; -K   
anti-D, -C; -K      anti-c, -E    49  46 
anti-D, -C; -Fyb      anti-E, -Cw   
anti-D, -C; -Kpa      anti-E; -Fya   
anti-D, -C, -Fya      anti-E; -Jka 
anti-D, -E; -Fya      anti-E; -Lea     
anti-D, -E; -Jka      anti-E; -Leb     
anti-D; -Jka; -S      anti-E; -Lua   
anti-CD      anti-E; -P1     
anti-CD; -K      anti-E; -M     
anti-D, -E, -G      anti-E; -K; -Cw     
anti-D; -s      anti-E; -Fya; -K     
anti-D, -C; -S      anti-E; -S; -Lea     
anti-D; -Fya; -Jka      anti-E; -Fya, -Fyb; -K; -S     
anti-D, -C, -E; -Fya      anti-E, -Cw; -Fya; -S; -Jka     
anti-D; -K; -M      anti-E, -f; -K; -Lea; -Jkb     
anti-C    20  27  anti-E; -S     
anti-C; - K      anti-E; -s     
anti-C, -Cw    156  anti-e    29 
anti-C, -G      anti-e, -Ce     
anti-C, -e    anti-e; -S     
anti-C, -E      b anti-E or anti-c      10 
anti-C; -Jkb      anti-Cw    37 
anti-C; -Lea    anti-Cw; -P1     
anti-C; -Lua      anti-Cw, -Lea     
anti-C; -Jka      anti-Cw; -Fya     
anti-C; -Fya      anti-Cw; -S     
anti-C, -E; -K      anti-f   
anti-C, -K, -e    anti-Goa     
anti-C, - E; -Lea      a anti-Lea    108   
anti-C; -K; -Lea      a anti-Lea; -M     
anti-K  1176  805  a anti-Leb    34   
anti-K; -U      a anti-Lea, -Leb    14  26 
anti-K; -Lea    a anti-Lea, -Leb; -Lua     
anti-K; -Leb      anti-S  16  19 
anti-K; -Lea, -Leb      anti-S, -U     
anti-K; -Jka    anti-s   
anti-K -Jkb      anti-U   
anti-K; -Fya      anti-M  104  207 
anti-K; -Jka; -S      anti-M; -Lua     
anti-K, -Kpa      anti-N   
anti-K; -Cw      anti-SARA     
anti-K; -Bga      b anti-Jk      93 
anti-K; -Kna      anti-Jka  22  19 
anti-K or -Lub      anti-Jka; -Cra     
anti-k      anti-Jka; -Lea     
anti-Ku      anti-Jkb   
anti-k; -Lub      anti-Jk3     
anti-Kpa  16  anti-Jk3; -E     
anti-Kpa; -Leb      anti-Lua    35 
anti-Kpa; -P1      anti-Lub   
anti-Kpb      a anti-Cha     
b anti-Fy      129  a anti-Bga     
anti-Fyb    a anti-Rd     
anti-Fyb; -M      anti-Cra     
anti-Fya    12  55  anti-ATML     
anti-Fya; -M      anti-Ge3     
anti-Fy3      anti-H   
anti-P1    14  anti-Chido   
anti-Yta      anti-Jra   
anti-Wra    anti-Vel   
ABO incompatibility    3000  291  ABO incompatibility and other antibodies    15   
Antibody not indicated or unidentifiedb    468         
Total  43  5999  8133         
a

Rarely implicated in HDFN.

b

unspecified

Important: Lewis's antibodies are not implicated in HDFN.

Figure 1 shows the alloantibodies found in isolation or combined with other antibodies. Anti-D (4890 cases), anti-K (2051 cases), and anti-E (1566 cases) were the most common in maternal plasma. Figure 2 shows the antibodies against RBC antigens classified according to the blood group system. Rh was the commonest with 7358 cases, followed by Kell (2080 cases), MNS (394 cases), Duffy (237 cases), and Kidd antibodies (200 cases). Anti-Lewis is not mentioned in Figures 1 or 2 because anti-Lewis antibodies are not implicated in HDFN.78

Figure 1.

RBC antibodies present in maternal plasma. anti-N (n = 7), anti-U (n = 7), anti-Yta (n = 6), anti-Bga (n = 6), anti-s (n = 5), anti-Cra (n = 5), anti-f (n = 4), anti-k (n = 4), anti-Vel (n = 3), anti-Jk3 (n = 2), anti-SARA (n = 2), anti-H (n = 2), anti-Chido (n = 2), anti-Jra (n = 2), anti-Wra (n = 2), anti-Goa, anti-Kna, anti-Ku, anti-Kpb, anti-Cha, anti-Rd, anti-ATML, anti-Ge3 (n = 1 each).

(0.09MB).
Figure 2.

RBC blood group system present in maternal plasma.

(0.06MB).
Discussion

HDFN is an important public health problem due to maternal-fetal incompatibility, which occurs due to fetal or neonatal hemolysis caused by IgG antibodies that cross the placenta.2 Just the presence of alloantibodies in maternal plasma is not sufficient to cause HDFN, it is necessary that antibodies cross the placenta and the fetus or neonate have the antigen expressed on their RBCs.

This review found 13,966 reports of alloimmunized pregnant women with anti-D being the most common alloantibody (35.01 %) followed by anti-K (14.69 %), anti-E (11.21 %), anti-c (5.48 %), anti-C (4.93 %) and anti-M (2.35 %). From prevalence studies, 0.17 % of pregnant women were alloimmunized, and from studies on alloimmunized pregnant women, 36.84 % had a baby with HDFN; these figures might be higher because some studies do not mention the clinical outcome of newborns. When verifying the geographical distribution of alloantibody studies, most were performed in Europe (35 studies), America (16 studies), and Asia (15 studies). These data show the need to perform more studies in other locations, thereby contributing to the understanding of alloimmunization and HDFN, for example, which antibody is the most involved in HDFN.

The Rh blood system is a highly polymorphic blood group79 with 56 antigens having been described.80 The most important antigens are D, E, e, C, c. Rh antibodies were found in the plasma of 7358 (52.69 %) of the 13,966 pregnant women, either in isolation or with other antibodies. Anti-E was the second most common alloantibody of the Rh system, followed by anti-c, anti-C, anti-Cw, anti-e, anti-G, anti-f and anti-Goa. The anti-G alloantibody is important for the correct identification of this latter alloantibody and differentiation from the anti-C and anti-D alloantibodies because if a pregnant woman does not present anti-D, prophylaxis is strongly recommended to avoid RhD alloimmunization.18,28

ABO maternal-fetal incompatibility is common because ABO antibodies develop naturally. Matteocci et al.46 analyzed HDFN related to ABO incompatibility: 81 babies had a positive direct antiglobulin test (DAT) and 32 required invasive treatments (exchange transfusions or intravenous immunoglobulins).46 When ABO incompatibility was present, the O blood group was associated with reduced alloimmunization compared to other blood group antigens because of the presence of anti-A/anti-B antibodies in maternal plasma. This could occur because of the clearance of A or B fetal RBCs in maternal plasma mediated by ABO antibodies. This clearance might avoid other alloimmunizations. Doyle et al. analyzed anti-D levels and IUT; on comparing ABO blood groups in respect to IUT, women of the A blood group have a higher risk of carrying a fetus with significant HDFN compared to women of the O blood group.52

Kell alloantibodies are the second most commonly related to HDFN.44 Anti-K is associated with a risk of HDFN, nonetheless the titer does not necessarily correlate with the clinical severity of HDFN.26 In a retrospective cohort that evaluated 1026 Kell immunized pregnancies, a cut-off value for risk of severe HDFN was established with 93 K-positive fetuses; the value of 4 identified a risk of severe HDFN.44 However, severe cases of HDFN occur with lower anti-K titers, demonstrating that there is no correlation between clinical outcome and the titer.81 Accordingly, any case of an anti-K positive pregnancy should be accompanied when it is not possible to predict the fetus phenotype because anti-K antibodies cause erythropoiesis suppression and the destruction of erythroid progenitors.

Anti-M is one case of alloantibodies in which IgM and IgG antibodies are found. IgG antibodies can cross the placenta and cause HDFN to variable degrees. A review of the Japanese population presented 33 cases of HDFN caused by anti-M; of those 29 developed severe HDFN, five presented IgG subclasses (IgG1 or IgG3).11 Six case reports related to anti-M antibodies describe babies with HDFN, three with different titers and clinical outcomes that required transfusions (RBCs and platelets), one required intrauterine transfusion for severe fetal anemia, and two evolved to intrauterine death. These data show that the severity was independent of the anti-M titer and the importance of the differentiation of IgG and IgM antibody classes.11,13,21

The physiopathology of anti-M is similar to those of anti-K and anti-Gerbich type 3 (anti-Ge3) with mechanisms of apoptotic or erythropoietic suppression (extracellular hemolysis) differing from the physiopathology of anti-D.82

Kidd blood group antigens are implicated in hemolytic transfusion reactions and HDFN. The most common antibodies are anti-Jka and anti-Jkb, which cause mild to severe disease. There is another antibody, anti-Jk3, which can be induced by alloimmunization in Kidd null phenotype people.24 Anti-Jk3 reacts with both Jka and Jkb antigens.24 It remains unclear which anti-Jk3 titers produce a clinically significant risk of HDFN; according to Lawicki et al.,24 fetuses with titers of 16 or higher should be monitored.

Multiple maternal alloantibodies could represent an increased risk of developing HDFN. One study from Israel showed that 6.8 % of pregnancies with multiple alloantibodies develop severe HDFN.3 Phung et al. compared the mean estimated daily decrease in Hb between the first and second IUT when the pregnant woman had anti-D in isolation and when it was associated with two other antibodies. This study showed that the drop was lower when the pregnant had only anti-D.58 These datasets suggest that the presence of multiple maternal alloantibodies could point toward an increase in the risk of the severity of HDFN. In this review, Table 4 presents observation studies and six case reports in which the HDFN was caused by multiple alloantibodies.6,7,16–18,24,37,38,40,43,58

One key factor in the risk of HDFN is the antibody class; IgM antibodies are not implicated in HDFN because they are not capable of crossing the placenta however IgG antibodies cross the placenta and can cause HDFN. IgG antibodies are subclassified into IgG1, IgG2, IgG3, and IgG4. The severity of HDFN may be related to the IgG subclasses; IgG1 and IgG3 cause severe HDFN and so these parameters should be included in protocols for measuring the intensity of the HDFN.40

When all antigen sites are occupied by the respective antibody, the reaction of these RBCs with commercial antisera produce a false negative phenotype in the antihuman globulin phase.26 These cases are rare but can occur when a direct antiglobulin test is positive. Using methods without the antihuman globulin phase with saline monoclonal IgM antiserum is an option to solve these cases, but these reagents are not always available.83 An IgG blocking technique can be used for RBCs that have a weak to moderately positive (2+) DAT;84 other methods use ethylenediaminetetraacetic acid (EDTA) elution, chloroquine diphosphate (CPD) and heat elution to remove IgG antibodies from RBCs.26

Molecular tests present an option to solve cases of false negative phenotypes in newborns. Novoselac et al. used a genotyping test (single specific primer-polymerase chain reaction - PCR-SSP) to confirm the K*01/K*02 genotype in a baby and solve an anti-K mediated HDFN.26 Lawicki et al. also used this test to confirm the JK*A/JK*B genotype in a baby and solve an anti-Jk3 mediated HDFN.24

Knowing the molecular basis of blood group antigens is also important to predict phenotypes and the formation of null alleles that might cause a lack of expression of the phenotype. The ISBT lists all blood group antigens and genes involved in antigen expressions. The null phenotype is caused by different mutations in the genes; some have higher frequencies in specific population groups, for example, the Fy null allele (c.1-67T>C, rs2814778) in African descendants85 and the Jk null allele (T871C mutation) in Polynesian descendants.86

Sequencing tests are useful to understand unexplained discrepancies between phenotype and genotype, discover antigen variants and predict the risk and significance of alloimmunization to cause HDFN and hemolytic transfusion reactions.25 In order to understand the risk of HDFN, it is recommended to perform maternal and paternal phenotyping or genotyping to predict fetal phenotype.66 However, paternal phenotyping is not always available in cases of suspected HDFN.24

The screening of irregular RBC antibodies and maternal antibody titers using the indirect antiglobulin test during prenatal care is important for the correct diagnosis and early clinical intervention as is using Doppler ultrasound to measure the peak systolic blood flow velocity in the middle cerebral artery.65 The correct identification of maternal alloantibodies and estimated risk of the fetus carrying the RBC antigen is important in prenatal exams.77 The precise identification of one or multiple alloantibodies and their clinical significance help to select packed RBC units for transfusion when IUT are needed, and after birth if the newborn needs a transfusion. In the newborn, it is important to perform DAT, and when the DAT is positive, to perform elution to identify the antibody bound to the RBC membrane.78

Some developed countries use non-invasive prenatal testing with cell-free fetal DNA (cffDNA) circulating in the maternal plasma of pregnant women to identify the fetus genotype and estimate the risk of HDFN.87 RhD incompatibility using cffDNA is an efficient prevention strategy as anti-D prophylaxis will only be provided if the fetus is RhD-positive.61 cffDNA is useful for other RBC antigens to determine if the fetus presents antigens for which the mother has alloantibodies and determine the risk of HDFN. This method is non-invasive but it is not available in all hemotherapy services.

IUTs were needed at least once in 1938 fetuses in this review however, this data is limited because some studies did not mention fetal outcomes. IUT is an intervention related to the severity of anemia, and early IUT (before 20 weeks) is associated with a higher risk of fetal injury.73 Despite the risk, IUT is an important intervention to treat fetal anemia. The need for IUT should be considered in prenatal care. However, there are great differences in the prenatal care provided in different countries and some pregnant women who need an IUT do not receive it.

Unfortunately, some countries do not screen all pregnant women for alloantibodies, due to many reasons such as the absence of universal healthcare, failure to recognize events during pregnancy that could trigger alloimmunization, and geographical difficulties in accessing a hemotherapy reference center.77

Conclusion

Investing in early diagnosis is important for the management of risks and complications related to the development of HDFN. Approaches using serological and molecular tests are useful for early diagnosis. Knowing the physiopathology of alloantibodies is also helpful in understanding the evolution of HDFN. Furthermore, considering the high diversity of blood group alleles, there is a need to study the frequency of pregnant alloimmunization and HDFN in different populations.

Authors’ contributions

MMOR and MF designed the study, performed the systematic literature search, performed data interpretation, and wrote the manuscript; MMOR, DM, SA and MF analyzed the data. All authors were involved in writing the paper and approved the final version.

Acknowledgments

We thank FAPERGS (PqG 02/2014, 1412373-4 PQG) for their financial support.

References
[1]
C. Zwiers, J.M. Koelewijn, L. Vermij, J. van Sambeeck, D. Oepkes, M. Haas, et al.
ABO incompatibility and RhIG immunoprophylaxis protect against non-D alloimmunization by pregnancy.
Transfusion (Paris), 58 (2018), pp. 1611-1617
[2]
G.K. Gupta, R. Balbuena-Merle, J.E. Hendrickson, C.A. Tormey.
Immunohematologic aspects of alloimmunization and alloantibody detection: a focus on pregnancy and hemolytic disease of the fetus and newborn.
Transfus Apher Sci, 59 (2020),
[3]
N. Rahimi-Levene, J. Chezar, V. Yahalom, The Israeli HDFN Study Group Investigators.
Red blood cell alloimmunization prevalence and hemolytic disease of the fetus and newborn in Israel: a retrospective study.
Transfusion (Paris), 60 (2020), pp. 2684-2690
[4]
R.N. Levitt, E. Gourri, C. Gassner, G. Banez-Sese, A. Salam, G.A. Denomme, et al.
Molecular characterization and multidisciplinary management of Gerbich hemolytic disease of the newborn.
Pediatr Blood Cancer, 65 (2018), pp. 4-7
[5]
V. Chatziantoniou, N. Heeney, T. Maggs, C. Rozette, C. Fountain, T. Watts, et al.
A descriptive single-centre experience of the management and outcome of maternal alloantibodies in pregnancy.
Transfus Med, 27 (2017), pp. 275-285
[6]
R. Zonneveld, H.H.H. Kanhai, M. Lamers, A. Brand, W.C.W.R. Zijlmans, H. Schonewille.
D antibodies in pregnant women in multiethnic Suriname: the observational RheSuN study.
Transfusion (Paris), 57 (2017), pp. 2490-2495
[7]
K.M. Quantock, G.H. Lopez, C.A. Hyland, L.W. Liew, R.L. Flower, F.J. Niemann, et al.
Anti-D in a mother, hemizygous for the variant RHD*DNB gene, associated with hemolytic disease of the fetus and newborn.
Transfusion (Paris), 57 (2017), pp. 1938-1943
[8]
C. Gassner, L. Castilho, Q. Chen, F.B. Clausen, G.A. Denomme, W.A. Flegel, et al.
International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology Report of Basel and three virtual business meetings: update on blood group systems.
[9]
AS idu Usman, R. Mustaffa, N. Ramli, S.A Diggi.
Hemolytic disease of the fetus and newborn caused by anti-E.
Asian J Transfus Sci, 7 (2013), pp. 84-85
[10]
C. Pitan, A. Syed, W. Murphy, O. Akinlabi, A. Finan.
Anti-S antibodies: an unusual cause of haemolytic disease of the fetus and newborn (HDFN).
BMJ Case Rep, (2013), pp. 2012-2014
[11]
H. Yasuda, H. Ohto, K.E. Nollet, K. Kawabata, S. Saito, Y. Yagi, et al.
Hemolytic disease of the fetus and newborn with late-onset anemia due to anti-M: a case report and review of the Japanese literature.
Transfus Med Rev, 28 (2014), pp. 1-6
[12]
V. Reddy, R. Kohan.
Severe hemolytic disease of fetus and newborn due to Anti-S antibodies.
J Clin Neonatol, 3 (2014), pp. 128
[13]
S. Arora, V. Doda, A. Maria, U. Kotwal, S. Goyal.
Maternal anti-M induced hemolytic disease of newborn followed by prolonged anemia in newborn twins.
Asian J Transfus Sci, 9 (2015), pp. 98-101
[14]
K. Mittal, T. Sood, N. Bansal, R.K. Bedi, P. Kaur, G. Kaur.
Clinical significance of rare maternal Anti Jka antibody.
Indian J Hematol Blood Transfu, 32 (2016), pp. 497-499
[15]
S.M. Mattaloni, C. Arnoni, R. Céspedes, C. Nonaka, C.T. Boggione, M.E.L. Brajovich, et al.
Clinical significance of an alloantibody against the kell blood group glycoprotein.
Transfus Med Hemother, 44 (2017), pp. 53-57
[16]
P. DeMoss, M. Asfour, K. Hersey.
Anti-K1 (Kell) antibody expressed in maternal breastmilk: a case report of a neonate with multiple intrauterine transfusions and postnatal exposure to kell antibody in maternal breastmilk.
Case Rep Pediatr, 2017 (2017), pp. 1-4
[17]
M. Li, J.C. Blaustein.
Persistent hemolytic disease of the fetus and newborn (HDFN) associated with passive acquisition of anti-D in maternal breast milk.
Transfusion (Paris), 57 (2017), pp. 2121-2124
[18]
R. Yousuf, A. Mustafa, S.L. Ho, Y.L. Tang, C.F. Leong.
Anti-G with concomitant anti-C and anti-D: a case report in a pregnant woman.
Asian J Transfus Sci, 11 (2017), pp. 62-64
[19]
R. Venkataraman, K. Yusuf.
Intravenous immunoglobulin in the management of a rare cause of hemolytic disease of the newborn: anti-SARA antibodies.
J Neonatal Perinatal Med, 10 (2017), pp. 329-332
[20]
S. Rauch, J. Ritgen, M. Wißkirchen, U. Bauerfeind, E. Kohne, C. Weinstock.
A case of anti-Rd causing fetal anemia.
Transfusion (Paris), 57 (2017), pp. 1485-1487
[21]
C. Hubinont, G. Delens, J. Vanalbada De Haan Hettema, C. Lambert, C. Debauche, J.M. Biard.
Successful management of a severe anti-M alloimmunization during pregnancy.
Eur J Obstetr Gynecol Reproduct Biol, 217 (2017), pp. 175-176
[22]
T. Bullock, N. Win, B. Jackson, S. Sivarajan, J. Penny, N. Mir.
Bombay phenotype (Oh) and high-titer anti-H in pregnancy: two case reports and a review of the literature.
Transfusion (Paris), 58 (2018), pp. 2766-2772
[23]
G.M. Millard, E.C. Mcgowan, B. Wilson, J.R. Martin, M. Spooner, S. Morris, et al.
A proposed new low-frequency antigen in the Augustine blood group system associated with a severe case of hemolytic disease of the fetus and newborn.
Transfusion (Paris), 58 (2018), pp. 3-5
[24]
S. Lawicki, E.A. Coberly, L.A. Lee, M. Johnson, Q. Eichbaum.
Jk3 alloantibodies during pregnancy-blood bank management and hemolytic disease of the fetus and newborn risk.
Transfusion (Paris), 00 (2018), pp. 1-6
[25]
E. Turley, E.C. McGowan, C.A. Hyland, E.M. Schoeman, R.L. Flower, A. Skoll, et al.
Severe hemolytic disease of the fetus and newborn due to allo-anti-D in a patient with a partial DEL phenotype arising from the variant allele described as RHD*148+1T (RHD*01EL.31).
Transfusion (Paris), 58 (2018), pp. 2260-2264
[26]
J. Novoselac, M. Raos, G. Tomac, M. Lukić, B Golubić Ćepulić.
K antigens on neonatal red blood cells blocked by anti-K with titer of 32.
Immunohematology, 36 (2020), pp. 54-57
[27]
J. Unterscheider, H. Ryan, J.J. Morrison, F.D. Malone.
Intrauterine red cell transfusion for anti-Kell isoimmunization in a fetus with Glanzmann's thrombasthenia.
Prenat Diagn, 33 (2013), pp. 1107-1109
[28]
B.L. Houston, R. Govia, A.M. Abou-Setta, G.J. Reid, M. Hadfield, C. Menard, et al.
Severe Rh alloimmunization and hemolytic disease of the fetus managed with plasmapheresis, intravenous immunoglobulin and intrauterine transfusion: a case report.
Transfus Apheresis Sci, 53 (2015), pp. 399-402
[29]
K. Kamei, K. Yamaguchi, M. Sato, M.. Ogura, S. Ito, T. Okada, et al.
Successful treatment of severe rhesus d-incompatible pregnancy with repeated double-filtration plasmapheresis.
J Clin Apher, 30 (2015), pp. 305-307
[30]
B. Zineb, L. Boutaina, L. Ikram, M.R. Driss, D. Mohammed.
Alloimmunisation foeto-maternelle Rhésus grave à propos d'un cas et revue de la littérature.
[31]
A. Colpo, T. Tison, M.T. Gervasi, C. Vio, M. Vicarioto, G. Silvestro, et al.
Personalized treatment with immunoadsorption and intravenous immunoglobulin in a case of severe Rh alloimmunization during pregnancy unresponsive to plasma – exchange.
Transfus Apher Sci, 56 (2017), pp. 480-483
[32]
T.T.S.M. Lee, P. Clarke, E. Prosser-Snelling.
Haemolytic disease of the fetus and newborn diagnosed after delivery of a baby to a mother with low anti-E antibody titres.
BMJ Case Rep, 12 (2019),
[33]
S.S.T. Riis, M.H. Joergensen, K.F. Rasmussen, S. Husby, J.P. Hasselby, L. Borgwardt, et al.
Transient congenital hyperinsulinism and hemolytic disease of a newborn despite rhesus D prophylaxis: a case report.
J Med Case Rep, 15 (2021), pp. 573
[34]
S.A. Souabni, B. El Habib, I. Oubahha, J. El Baqali, A. Aboulfalah, A Soummani.
Severe neonatal thrombocytopenia due to maternal alloimmunization: case report and literature review.
Pan Afr Med J, 38 (2021), pp. 1-8
[35]
J. Pina Moreno, V. Ortega Abad, A. Perez Corral, S Garcia-Tizon Larroca.
Maternal mirror syndrome with foetal hydrops due to isoimunization by anti-KPa antibodies: a case report and narrative literature review.
Clin Case Rep, 10 (2022),
[36]
K.R. Fives, D.A. Chism, B. Beetz, I. Elkins, M. Butala.
Hemolytic disease of the fetus and newborn due to anti-gonzales antibody.
[37]
S. Mandal, S. Malhotra, G. Negi, A. Tiwari, S. Mitra, S. Basu, et al.
Severe hemolytic disease of the fetus and newborn due to anti-E and anti-Jka.
Immunohematology, 36 (2020), pp. 60-63
[38]
N. Altuntas, I. Yenicesu, Ö. Himmetoglu, F. Kulali, E. Kazanci, S. Unal, et al.
The risk assessment study for hemolytic disease of the fetus and newborn in a University Hospital in Turkey.
Transfus Apher Sci, 48 (2013), pp. 377-380
[39]
M.N. Hassan, N.H.M. Noor, S.R.J. Noor, S.A. Sukri, R. Mustafa, H.V.R.L. Aster.
Hemolytic disease of fetus and newborn due to maternal red blood cell alloantibodies in the Malay population.
Asian J Transfus Sci, 8 (2014), pp. 113-117
[40]
E. Velkova.
Correlation between the amount of anti-D antibodies and IgG subclasses with severity of haemolytic disease of foetus and newborn.
Maced J Med Sci, 3 (2015), pp. 293-297
[41]
J.L. Krstic, S. Dajak, J. Bingulac-Popovic, V. Dogic, J. Mratinovic-Mikulandra.
Anti-D antibodies in pregnant d variant antigen carriers initially typed as RhD+.
Transfus Med Hemother, 43 (2016), pp. 419-424
[42]
M. Sidhu, R. Bala, N. Akhtar, V Sawhney.
Prevalence, specificity and titration of red cell alloantibodies in multiparous antenatal females at a tertiary care centre from North India.
Ind J Hematol Blood Transfus, 32 (2016), pp. 307-311
[43]
B. Peeters, I. Geerts, A.M. Badts, V. Saegeman, J. Moerman.
Usefulness of maternal red cell antibodies to predict hemolytic disease of the fetus and newborn and significant neonatal hyperbilirubinemia: a retrospective study.
Clin Chem Lab Med, 55 (2017), pp. e202-e205
[44]
Y.M. Slootweg, I.T. Lindenburg, J.M. Koelewijn, I.L. van Kamp, D. Oepkes, M. de Haas.
Predicting anti-Kell-mediated hemolytic disease of the fetus and newborn: diagnostic accuracy of laboratory management.
Am J Obstet Gynecol, 219 (2018),
[45]
M. Kahar.
Frequency of red cell alloantibodies in pregnant females of navsari district: an experience that favours inclusion of screening for irregular erythrocyte antibody in routine antenatal testing profile.
J Obstetr Gynecol India, 68 (2018), pp. 300-305
[46]
A. Matteocci, A. de Rosa, E. Buffone, L. Pierelli.
Retrospective analysis of HDFN due to ABO incompatibility in a single institution over 6 years.
Transfus Med, 29 (2019), pp. 197-201
[47]
Y. Mbalibulha, E. Muwanguzi, G.R. Mugyenyi, B. Natukunda.
Occurrence of anti-D alloantibodies among pregnant women in Kasese District, Western Uganda.
J Blood Med, 6 (2015), pp. 125-129
[48]
A. Girault, S. Friszer, E. Maisonneuve, L. Guilbaud, A. Cortey, J.M. Jouannic.
Intrauterine blood transfusion: status report of 4 years of practice in France (2011–2014).
J Gynecol Obstet Hum Reprod, 46 (2017), pp. 119-124
[49]
I. Moinuddin, C. Fletcher, P. Millward.
Prevalence and specificity of clinically significant red cell alloantibodies in pregnant women-a study from a tertiary care hospital in Southeast Michigan.
J Blood Med, 10 (2019), pp. 283-289
[50]
Z.G. Özköse, S.C. Oğlak.
The combined effect of anti-D and non-D rh antibodies in maternal alloimmunization.
Turk J Obstet Gynecol, 18 (2021), pp. 181-189
[51]
N.M.A. Ali, A.A. Mohamed.
Frequency and specificity of red blood cells alloantibodies among Sudanese multiparous women.
J Biosci Appl Res, 0 (2022), pp. 89-92
[52]
B. Doyle, J. Quigley, M. Lambert, J. Crumlish, C. Walsh, P. McParland, et al.
A correlation between severe haemolytic disease of the fetus and newborn and maternal ABO blood group.
Transfus Med, 24 (2014), pp. 239-243
[53]
R. Kapur, L. della Valle, M. Sonneveld, A.H. Ederveen, R. Visser, P. Ligthart, et al.
Low anti-RhD IgG-Fc-fucosylation in pregnancy: a new variable predicting severity in haemolytic disease of the fetus and newborn.
Br J Haematol, 166 (2014), pp. 936-945
[54]
E.P. Verduin, A. Brand, L.M.G. van de Watering, F.H.J. Claas, D. Oepkes, E. Lopriore, et al.
Factors associated with persistence of red blood cell antibodies in woman after pregnancies complicated by fetal alloimmune haemolytic disease treated with intrauterine transfusions.
Br J Haematol, 168 (2015), pp. 443-451
[55]
T. Kristinsdóttir, S. Kjartansson, H. Hardardottir, T. Jonsson, A.M. Halldorsdottir.
Positive Coomb's test in newborns; causes and clinical consequences Summary of cases diagnosed in the Blood Bank in the years 2005 to 2012.
Laeknabladid, 2016 (2016), pp. 326-331
[56]
B. Stetson, S. Scrape, K. Markham.
Anti-M Alloimmunization: management and outcome at a single institution.
Am J Perinatol Rep, 07 (2017), pp. e205-e210
[57]
M.E. Sonneveld, J. Koelewijn, M. de Haas, J. Admiraal, R. Plomp, C.A.M. Koeleman, et al.
Antigen specificity determines anti-red blood cell IgG-Fc alloantibody glycosylation and thereby severity of haemolytic disease of the fetus and newborn.
Br J Haematol, 176 (2017), pp. 651-660
[58]
T.V. Phung, V. Houfflin-Debarge, N. Ramdane, L. Ghesquière, A. Delsalle, C. Coulon, et al.
Maternal red blood cell alloimmunization requiring intrauterine transfusion: a comparative study on management and outcome depending on the type of antibody.
Transfusion (Paris), (2018),
[59]
M.E.A. Rath, V.E.H.J. Smits-Wintjens, I.T.M. Lindenburg, C.C. Folman, A. Brand, I.L. van Kamp, et al.
Postnatal outcome in neonates with severe Rhesus c compared to Rhesus D hemolytic disease.
Transfusion (Paris), 53 (2013), pp. 1580-1585
[60]
V.E.H.J. Smits-Wintjens, M.E.A. Rath, E.W. Van Zwet, D. Oepkes, A. Brand, F.J. Walther, et al.
Neonatal morbidity after exchange transfusion for red cell alloimmune hemolytic disease.
Neonatology, 103 (2013), pp. 141-147
[61]
E. Tiblad, M. Westgren, D. Pasupathy, A. Karlsson, A.T. Wikman.
Consequences of being Rhesus D immunized during pregnancy and how to optimize new prevention strategies.
Acta Obstet Gynecol Scand, 92 (2013), pp. 1079-1085
[62]
C. Garabedian, T. Rakza, D. Thomas, B. Wibaut, P. Vaast, D. Subtil, et al.
Neonatal outcome after fetal anemia managed by intrauterine transfusion.
Eur J Pediatr, 174 (2015), pp. 1535-1539
[63]
C. Garabedian, P. Vaast, H. Behal, C. Coulon, A. Duahamel, D. Thomas, et al.
Management of severe fetal anemia by Doppler measurement of middle cerebral artery: are there other benefits than reducing invasive procedures?.
Eur J Obstetr Gynecol Reproduct Biol, 192 (2015), pp. 27-30
[64]
J. Philip, N. Jain.
Antenatal maternal serum IAT titer and fetal outcome in Rh isoimmunized pregnancies.
Indian J Hematol Blood Transfus, 31 (2015), pp. 137-141
[65]
S. Healsmith, H. Savoia, S.C. Kane.
How clinically important are non-D Rh antibodies?.
Acta Obstet Gynecol Scand, 98 (2019), pp. 877-884
[66]
M.Á. Sánchez-Durán, M.T. Higueras, C. Halajdian-Madrid, M. Avilés García, A. Bernabeu-García, N. Maiz, et al.
Management and outcome of pregnancies in women with red cell isoimmunization: a 15-year observational study from a tertiary care university hospital.
BMC Pregnancy Childbirth, 19 (2019),
[67]
J.W. Snelgrove, R. D'souza, P.G.R. Seaward, R. Windrim, E.N. Kelly, G Ryan.
Predicting intrauterine transfusion interval and perinatal outcomes in alloimmunized pregnancies: time-to-event survival analysis.
Fetal Diagn Ther, 46 (2019), pp. 425-432
[68]
N.E.H. Crawford, R. Parasuraman, D.T. Howe.
Intraperitoneal transfusion for severe, early-onset rhesus disease requiring treatment before 20 weeks of gestation: a consecutive case series.
Eur J Obstetr Gynecol Reproduct Biol, 244 (2020), pp. 5-7
[69]
B. Gudlaugsson, H. Hjartardottir, G. Svansdottir, G. Gudmundsdottir, S. Kjartansson, T. Jonsson, et al.
Rhesus D alloimmunization in pregnancy from 1996 to 2015 in Iceland: a nation-wide population study prior to routine antenatal anti-D prophylaxis.
Transfusion (Paris), 60 (2020), pp. 175-183
[70]
L. Lieberman, J. Callum, R. Cohen, C. Cserti-Gazdewich, N.N.N. Ladhani, J. Buckstein, et al.
Impact of red blood cell alloimmunization on fetal and neonatal outcomes: a single center cohort study.
Transfusion (Paris), 60 (2020), pp. 2537-2546
[71]
A.Ö. Şavkli, B.A. Çetin, Z. Acar, Z. Özköse, M. Behram, S.S. Çaypinar, et al.
Perinatal outcomes of intrauterine transfusion for foetal anaemia due to red blood cell alloimmunisation.
J Obstet Gynaecol (Lahore), 40 (2020), pp. 649-653
[72]
S. Liu, G. Ajne, A. Wikman, C. Lindqvist, M. Reilly, E. Tiblad.
Management and clinical consequences of red blood cell antibodies in pregnancy: a population-based cohort study.
Acta Obstet Gynecol Scand, 100 (2021), pp. 2216-2225
[73]
E. Maisonneuve, A. Dugas, S. Friszer, C. Toly-Ndour, L. Cariot, F. Dhombres, et al.
Effect of intravenous immunoglobulins to postpone the gestational age of first intrauterine transfusion in very severe red blood cell alloimmunization: a case-control study.
J Gynecol Obstet Hum Reprod, 50 (2021),
[74]
A.J. Lee, A. Leonard, K.B. Markham.
Fetal and neonatal reticulocyte count response to intrauterine transfusion for the treatment of red blood cell alloimmunization.
J Pediatr Hematol Oncol, 44 (2022), pp. E1046-E1049
[75]
E. Vlachodimitropoulou, M. Garbowski, S. Anne Solomon, N. Abbasi, G. Seaward, R. Windrim, et al.
Outcome predictors for maternal red blood cell alloimmunisation with anti-K and anti-D managed with intrauterine blood transfusion.
Br J Haematol, 196 (2022), pp. 1096-1104
[76]
L. Ghesquière, J. Leroy, V. Deken, A. Tournier, P. Vaast, D. Subtil, et al.
Anti-RH1 alloimmunization: at what maternal antibody threshold is there a risk of severe fetal anemia?.
Transfusion (Paris), 63 (2023), pp. 629-637
[77]
A.A. Kureba, W. Gudu, A. Mersha, E. Jemal, A.A. Abdosh.
Perinatal outcome of pregnant women with RhD sensitization: a five-year cross-sectional study at a tertiary care hospital in Ethiopia.
Int J Womens Health, 15 (2023), pp. 571-578
[78]
J. Acker, C.R. Alquist, J.W. Atkins Jr., D.J Bailey, P.D. Borge Jr., et al.
Technical Manual.
AABB, 20th ed., pp. 816
[79]
L. Dean.
The Rh blood group.
Blood Groups and Red Cell Antigens, National Center for Biotechnology Information (US), (2005),
[80]
ISBT. Names for RH (ISBT 004) Blood Group Alleles: RHCE Alleles. Published March 31, 2022. Accessed September 4, 2023. https://www.isbtweb.org/isbt-working-parties/rcibgt/blood-group-terminology.html
[81]
J.B. Sun.
The prenatal intervention of pregnancy complicated with anti-Kell isoimmunization: a review.
J Maternal-Fetal Neonatal Med, 34 (2021), pp. 2893-2899
[82]
O. Hitoshi, G.A. Denomme, I. Shoichi, I. Atsushi, K.E. Nollet, Y. Hiroyasu.
Three non-classical mechanisms for anemic disease of the fetus and newborn, based on maternal anti-Kell, anti-Ge3, anti-M, and anti-Jra cases.
[83]
Covas D.T., Langhi Junior D.M., Bordin J.O. Hemoterapia: fundamentos e Prática. Atheneu; 2007.
[84]
T.S. Sererat, D. Veidt, A. Dutched.
A quick and simple method for phenotyping IgG-sensitized red blood cells.
Immunohematolog, 16 (2000), pp. 154-156
[85]
G. Höher, M. Fiegenbaum, S. Almeida.
Molecular basis of the Duffy blood group system.
Blood Transfus, (2017), pp. 1-8
[86]
N.M. Irshaid, S.M. Henry, M.L. Olsson.
Genomic characterization of the Kidd blood group gene:different molecular basis of the Jk(a–b–) phenotypein Polynesians and Finns.
Immunohematology, 40 (2000), pp. 69-74
[87]
T. Papasavva, P. Martin, T.J. Legler, M. Liasides, G. Anastasiou, A. Christofides, et al.
Prevalence of RhD status and clinical application of non-invasive prenatal determination of fetal RHD in maternal plasma: a 5 year experience in Cyprus.
BMC Res Notes, 9 (2016), pp. 1-8
[88]
Yousuf R., Mustafa A., Ho S.L., Tang Y.L., Leong C.F. Anti-G with Concomitant Anti-C and Anti-D: a Case Report in a Pregnant Woman.; 2017. http://www.medknow.com
[89]
J. Philip, N. Kushwaha, N. Jain.
Report of two cases of anti-M antibody in antenatal patients.
Asian J Transfus Sci, 9 (2015), pp. 89-91
Copyright © 2024. Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular
Baixar PDF
Idiomas
Hematology, Transfusion and Cell Therapy
Opções de artigo
Ferramentas