Immune Tolerance Induction (ITI) is the only treatment to eradicate inhibitors in people with Severe Hemophilia A (SHA). Successful ITI restores Factor VIII (FVIII) tolerance. ITI is demanding and successful in approximately 70% of people. Therefore, identifying predictors of ITI outcome is essential to guide clinical decision-making. We aimed to identify genetic predictors of ITI success in people with SHA and inhibitors who underwent ITI. This observational multicenter study included people with SHA who underwent ITI, between 2015 and 2023. Clinical and patient data including factor VIII gene (F8) mutation type and DNA samples were collected. Successful ITI was defined by a negative inhibitor titer and an adequate response to FVIII concentrates. The associations between ITI success and F8 genotype and 216 candidate predictors including single nucleotide polymorphisms (SNPs) and human leukocyte antigen (HLA)-variants employing a global screening array (GSA), CA dinucleotide Short Tandem Repeat (STR) polymorphisms in the Interleukin (IL)-10 promoter region, and FCGR2/3 gene locus variations were analyzed. Of 204 participants, 147 (72.1%) achieved ITI success. The majority (52.0%) of participants had F8 intron 22 inversion. None of the candidate SNPs/HLA-variants, IL-10 CA dinucleotide STR, or FCGR2/3 gene locus variations were associated with ITI success. F8 large deletions were negatively associated with ITI success (OR = 0.15, 95% CI 0.04‒0.51, p = 0.002). Our study including 204 people with SHA identified F8 large deletions as a predictor of ITI failure. Pooling cohorts may allow the identification of additional genetic predictors of ITI success in the future.
O fator de impacto mede o número médio de citações recebidas em um ano por trabalhos publicados na revista durante os dois anos anteriores.
© Clarivate Analytics, Journal Citation Reports 2025
O CiteScore mede as citações médias recebidas por documento publicado. Mais informação
Ver maisSJR é uma métrica de prestígio baseada na idéia de que todas as citações não são iguais. SJR utiliza um algoritmo similar ao page rank do Google; é uma medida quantitativa e qualitativa ao impacto de uma publicação.
Ver maisSNIP permite comparar o impacto de revistas de diferentes campos temáticos, corrigindo as diferenças na probabilidade de ser citado que existe entre revistas de distintas matérias.
Ver mais




