HEMATOL TRANSFUS CELL THER. 2025;xxx(xx):106087



# HEMATOLOGY, TRANSFUSION AND CELL THERAPY



www.htct.com.br

# **Review article**

# Lymphoma-associated hemophagocytic lymphohistiocytosis

- Thomás de Souza Patto Marcondes (1) a,b,d,\*, Carlos Sérgio Chiattone (1) c,d, 02 Rafael Dezen Gaiolla (1) a,b,d
  - <sup>a</sup> Universidade Estadual Paulista (Unesp), Faculdade de Medicina de Botucatu, Departamento de Clínica Médica Geral, Hematologia, Botucatu, SP, Brazil
  - <sup>b</sup> Hospital das Clínicas da Faculdade de Medicina de Botucatu, Botucatu, SP, Brazil
  - c Faculdade de Ciências Médicas da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil

#### ARTICLE INFO

Article history: Received 13 October 2024 Accepted 21 September 2025 Available online xxx

Keywords: Hemophagocytic lymphohistiocytosis Lymphoma

#### ABSTRACT

Hemophagocytic lymphohistiocytosis is a severe, rare condition characterized by excessive immune activation, leading to significant morbidity and mortality. Lymphoma is the most common trigger for malignancy-related hemophagocytic lymphohistiocytosis in adults, with large B-cell non-Hodgkin, T- and NK-cell lymphomas being the most diagnosed. Hodgkin lymphoma is less frequently observed. Lymphoma-associated hemophagocytic lymphohistiocytosis poses diagnostic and therapeutic challenges due to its complex pathogenesis and heterogeneous presentation. Treatment aims to control the overactive immune system, identify and treat modifying factors, optimize clinical support, and treat the underlying lymphoma. Early etoposide (Etoposide) combined with dexamethasone for immunomodulation results in rapid control of hyperinflammation and clinical improvement. It has increasingly been adopted as a standard initial approach followed by lymphoma-specific treatment. However, the outcomes for patients with lymphoma-associated hemophagocytic lymphohistiocytosis remain poor, especially for patients with T- and NKcell lymphomas. In relapsed or refractory cases, emerging therapies have been explored, with ruxolitinib showing the most promising results. This paper reviews current understanding of the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of lymphoma-associated hemophagocytic lymphohistiocytosis in adults and proposes an appropriate treatment protocol based on the most recent data from the literature.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

#### Introduction

2531-1379/© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: T.d.S.P. Marcondes et al., Lymphoma-associated hemophagocytic lymphohistiocytosis, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106087

d Hospital Samaritano Higienópolis, São Paulo, SP, Brazil

Corresponding author at: Hospital das Clínicas da Faculdade de Medicina de Botucatu, Rubião Júnior s/n, Botucatu, SP 18618-970, Brazil.

E-mail address: thomaspatto@gmail.com (T.d.S.P. Marcondes).

https://doi.org/10.1016/j.htct.2025.106087

Hemophagocytic lymphohistiocytosis (HLH) is a spectrum of 2 conditions characterized by intense, pathological immune 3 activation with clinical manifestations such as extreme 4

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

30

32

33

35

36

37

38

39

41

42

43

44

45

46

47

48

50

51

53

54

55

56

57

59

60

inflammation, hemophagocytosis, and end-organ damage. HLH is rare and is most frequently diagnosed in children, but 30-40% of cases are observed in adults [1]. HLH is classified as an H-group histiocytic disorder and is historically divided into primary or secondary HLH.

Primary HLH is predominantly observed in children whose genetic defects lead to inflammasome impairment or disturbance, particularly of cytotoxic T-cells and natural killer (NK) cells. Secondary HLH is mainly observed in adults, with immune activation being caused by external triggers, including persistent infection, autoimmune conditions, and malignancy [2,3]. However, recent findings suggest that 40% of adult patients have genetic abnormalities that mainly affect the perforin cytosolic pathway. Based on its pathophysiology, HLH is currently defined as a clinical spectrum of conditions with a predisposition to hyperinflammation with predisposing factors that include genetic defects, immune impairment, and acute triggers. [4,5]

Malignancy is the leading cause of HLH in adults, diagnosed in up to 50% of cases. Hematological neoplasms and lymphomas are the most common triggers of malignancyassociated HLH (M-HLH) in adults [1,6]. This paper reviews the pathogenesis and diagnosis of lymphoma-associated HLH (L-HLH) in adults and proposes an appropriate treatment protocol based on the most recent data from the literature.

# **Epidemiology**

HLH is a rare and often underdiagnosed disease. Therefore, the incidence and prevalence in adults remain unclear [7,8]. Available studies based on small cohorts estimate an annual incidence lower than 1 case per 100,000 people per year [1,9]. The median age is approximately 50 years, with a clear predominance of females (7:1).

In assessing the epidemiology of M-HLH, a Swedish population-based study analyzed all patients with neoplastic and histiocytic disorders registered in the national database and reported an incidence of 0.21 cases per 100,000 inhabitants, with a male predominance. Lymphoma was the most common malignancy diagnosed in M-HLH [10].

In hematologic malignancies, approximately 1% develop HLH, detected either at the time of initial cancer diagnosis or during treatment [9]. Lymphomas are the most common triggers, accounting for 45-50% of patients. Of these, T- and NKcell lymphomas/leukemias are diagnosed in approximately 35% of cases; large B-cell non-Hodgkin lymphomas (NHL) in 32 %; and Hodgkin lymphoma in 6 % [1]. Uncommon subtypes of B- (intravascular B-cell lymphoma) and T-cell (nasal NK/Tcell, angioimmunoblastic T-cell, gamma/delta T-cell, and subcutaneous panniculitis-like T-cell lymphoma) NHL must also be considered because they account for 20 % of adults with L-HLH [1,11].

A key epidemiological finding is the geographic variability in the incidence of different subtypes of lymphomas associated with HLH. T-cell and NK-cell lymphomas prevail in Eastern countries, such as China and Japan. In contrast, Western countries tend towards an equal distribution of B- and T-cell lymphomas [1]. The reasons for this geographic variability are unclear, but they may be related to Epstein-Barr virus

infection, which is more prevalent in eastern countries, and 62 genetic differences between these populations [12,13]. A 63 recent study evaluated 173 patients with intravascular B-cell 64 lymphoma, of whom 50 were from Western countries and 123 65 from Eastern countries. None of the patients from Western countries presented with L-HLH in this series. Conversely, 45 patients from eastern countries were diagnosed with L-HLH 68 at some point. These findings suggest a genetic predisposition 69

HLH can also be triggered by lymphoma treatment (known 71 as treatment-related HLH), including chemotherapy, hematopoietic stem cell transplantation (HSCT), and, more recently, checkpoint inhibitors and targeted cell therapy, such as chimeric antigen receptor (CAR) T-cell and bispecific antibody 75 therapy. The incidence is highly variable, reaching 30% in some series. Moreover, the diagnosis is challenging due to potential confounding factors, such as lymphoma activity and secondary infections [15,16].

# Lymphoma-associated hemophagocytic lymphohistiocytosis pathogenesis

Under normal physiology, the immune response is an orchestrated process involving interactions between immune cells 83 and proteins, such as granulocytes, lymphocytes, macrophages, immunoglobulins, cytokines, and complement molecules. Each condition that increases the inflammatory response is counteracted by a process that avoids excessive 87 and dangerous immune stimulation, which could lead to tissue destruction. In HLH, this process is disrupted, particularly 89 the autoregulatory mechanisms, resulting in excessive and 90 persistent inflammation and organ damage [3,17].

80

81

91

106

107

109

110

111

Primary (or familial) HLH is considered a model for under- 92 standing the pathophysiology of this condition. In these patients, recessive mutations in genes involved in T- and NKcell cytotoxicity cause defective perforin and granzyme secretion, impairing the ability to clear the antigenic stimulus and 96 downregulate the inflammatory response [4,15,18]. In turn, 97 the pathophysiology of secondary (or acquired) HLH is not entirely understood and is likely to be multifactorial. One of the main mechanisms proposed so far is the constant presence of an antigenic stimulus, resulting in CD8+ T- and NKcell hyperactivation and, consequently, excessive secretion of 102 proinflammatory cytokines and increased macrophage activation. Furthermore, hereditary genetic alterations associated with immune response defects previously considered only in primary HLH have also been identified in secondary HLH and may contribute to its pathogenesis [4,8,18-21].

In M-HLH, particularly L-HLH, the immune dysfunction is 108 also intrinsic to neoplasia or triggered by the different treatment modalities, leading to immune activation and loss of immune inhibitory function [19].

Finally, increased predisposition to bacterial and viral 112 infection at diagnosis and during lymphoma treatment is a 113 significant risk factor for L-HLH. Among the primary patho- 114 gens, Epstein-Barr virus stands out because chronic infection 115 with this virus is directly related to the development of some 116 types of lymphomas, such as Burkitt and T-cell lymphomas, 117

163

164

179

180

187

and plays a key role in regulating the immune response to neoplasias [13,22].

#### Clinical presentation and diagnosis

121

123

124

126

127

128

129

130

132

133

135

136

138

139

141

142

143

144

145

147

148

149

150

151

152

153

154

155

156

L-HLH has a challenging diagnosis; it may be detected at diagnosis, or during relapse or treatment of lymphoma. L-HLH is often triggered by an uncommon lymphoma histological subtype with an atypical clinical presentation [11]. Moreover, some signs and symptoms of L-HLH are not specific to this disease and may be explained by lymphoma or because of treatment.

Clinically, L-HLH presents as an acute or subacute febrile condition associated with multiple organ dysfunction. Fever is present in >90 % of patients, usually associated with cytopenia in at least two lineages [6,23]. Other commonly observed findings in L-HLH include markedly elevated lactate dehydrogenase (LDH), ferritin, and soluble CD25 (sCD25), which are almost universally present [23]. Organic involvement may manifest as hepatocellular injury, which may or may not be associated with impaired liver function, hepatosplenomegaly, neurological changes, skin lesions, bleeding, or acute respiratory distress syndrome [1,7,11,24,25]. Moreover, most patients with L-HLH are diagnosed in advanced Ann-Arbor stages and frequently have lymphoma infiltration in the bone marrow and other extranodal sites, like the liver and skin [23].

Different criteria grouped into scoring protocols have been proposed for a more accurate diagnosis of HLH. These are also used for the diagnosis of L-HLH. The oldest and most widely used are the revised HLH-2004 diagnostic criteria from the Histiocyte Society, which are based on eight clinical, laboratory, and cytopathological criteria (Table 1). Diagnostic confirmation requires meeting at least five of the eight criteria [26].

These scoring protocols were initially developed for children with familial HLH. While they capture the most frequently observed alterations in adult HLH, their sensitivity and specificity have not been prospectively validated in adults. Additionally, HLH-2004 uses nonspecific parameters that may overlap with other inflammatory conditions or

### Table 1 - HLH-2004 diagnostic guidelines for hemophagocytic lymphohistiocytosis.

At least five of the following criteria: Fever Splenomegaly Cytopenias (affecting at least two lineages): Hemoglobin <9 g/dL Platelets <100.000/mm<sup>3</sup> Neutrophils <1.000/mm<sup>3</sup> Hypertriglyceridemia and/or hypofibrinogenemia Fasting triglycerides ≥265 mg/dL fibrinogen <150 mg/dL Hemophagocytosis in bone marrow, spleen, liver or lymph nodes Ferritin >500 mg/dL Reduced or absent NK-cell function Increased serum levels of CD25 (soluble IL-2 receptor) ≥2400 U/mL manifestations of lymphoma and overlooks alterations frequently observed in HLH, such as increased transaminase, lactic dehydrogenase, D-dimer, and C-reactive protein levels and neurological manifestations. Therefore, while HLH-2004 should be applied in clinical practice, the findings should be interpreted with caution, particularly where there is high suspicion of HLH without fully meeting the criteria [11,20,27].

Alternative guidelines have been proposed to improve HLH diagnosis in adults. Based on data from a retrospective cohort, the HScore was developed to define and predict the likelihood of adult HLH. After weighing the significant clinical and laboratory parameters, the authors identified an optimal cutoff of 169 points with 93 % sensitivity and 86 % specificity (Table 2). Notably, 44 % of the study cohort were patients with cancer [28]. In a retrospective analysis, the accuracy of the HScore was directly compared with that of HLH-2004, with the former outperforming the latter, reaching 90 % sensitivity and 79 % specificity for adults at the initial presentation. However, the values were similar when clinical status was worse. Moreover, the optimal cutoff can be affected by the trigger and pattern of the individual inflammatory response. These factors may impact the sensitivity and specificity of the 178 HScore in different cohorts [29,30].

In a retrospective database analysis that included only patients with complete documentation of cancer, HLH-2004 criteria were compared with extended diagnostic criteria comprising 18 variables. The authors of this study, conducted at the MD Anderson Cancer Center, University of TX, reported that among patients with suspected HLH, only 21% met the standard HLH-2004 diagnostic criteria, whereas 57 % met the extended diagnostic criteria. No significant difference in outcome (overall survival [OS]) was found between the 13 patients who met the HLH-2004 criteria and the 20 patients who did not meet the HLH-2004 criteria but met the extended 18-point HLH criteria, suggesting that these patients are likely to have had a more aggressive systemic process. Case in point, the OS was significantly improved among the 26 patients with hemophagocytosis or lymphohistiocytosis on 194

| Table 2 – HScore.                     |                                                                                              |
|---------------------------------------|----------------------------------------------------------------------------------------------|
| Parameter                             | Points for scoring                                                                           |
| 1. Fever ( °C)                        | 0 (<38.4), 33 (38.4 –39.4) or 49 (>39.4)                                                     |
| 2. Cytopenia                          | 0 (1 lineage), 24 (2), 34 (3)                                                                |
| 3. Organomegaly                       | 0 (no), 23 (hepatomegaly or<br>splenomegaly) or 38 (hepa-<br>tomegaly and splenomeg-<br>aly) |
| 4. Ferritin (ng/mL)                   | 0 (<2000), 35 (2000–6000) or 50 (>6000)                                                      |
| 5. Fibrinogen (mg/dL)                 | 0 (>250) or 30 (≤250)                                                                        |
| 6. Triglycerides (mg/dL)              | 0 (<150), 44 (150–400), 64<br>(>400)                                                         |
| 7. Aspartate aminotransferase         | 0 (<30) or 19 (≥30)                                                                          |
| 8. Hemophagocytosis on biopsy         | 0 (no) or 35 (yes)                                                                           |
| 9. Known underlying immunosuppression | 0 (no) or 18 (yes)                                                                           |

Please cite this article as: T.d.S.P. Marcondes et al., Lymphoma-associated hemophagocytic lymphohistiocytosis, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106087

198

199

200

201

202 203

204

205

206

207

208

210

211

213

214

217

218

219

220

221

222

223

225

226

227

228 229

230

231

232

pathological examination but failed to meet either HLH-2004 or expanded HLH criteria [31].

More recently, to improve and simplify the specific diagnosis of M-HLH, the roles of sCD25 and ferritin as potential diagnostic biomarkers were studied in a multicenter retrospective cohort of 225 patients [32]. Patients with and without HLH were included, all of whom met the HLH-2004 criteria. Among different HLH diagnostic parameters, the optimized HLH inflammatory (OHI) index, a composite score defined by the simultaneous elevation of sCD25 (>3900 U/mL) and ferritin (>1000 ng/mL), provides an accurate diagnosis, yielding a prognostic tool with 84% sensitivity and 81% specificity. OHI highly predicted mortality across hematologic malignancies, but this combined index still requires validation in larger cohorts. The kinetics of sCD25 have also been explored as a predictor of survival. Verkamp et al. demonstrated that the failure to improve sCD25 from baseline strongly predicted survival in children and young adults treated with etoposide (Etoposide)-based therapy. Additionally, the combination of sCD25 with other biomarkers such as platelet count, absolute lymphocyte count, and blood urea nitrogen also predicted mortality, suggesting a potential role in the early identification of high-risk patients [33].

Despite these tools, diagnosis of L-HLH remains challenging because symptoms are usually nonspecific, and lymphoma can be difficult to detect on physical examination. For an early diagnosis, physicians must identify hyperinflammation based on clinical and laboratory findings, including rapid clinical deterioration, persistent fever, a high ferritin level, and cytopenia. Atypical clinical presentations and less frequent histological subtypes should also be considered (Table 3). Ancillary methods, such as positron emission tomography-computed tomography-guided tissue biopsy, bone marrow biopsy, and flow cytometry, may facilitate the diagnosis. Another relevant issue is the limited access to specific diagnostic tests required by the HLH-2004 criteria, such as sCD25 levels and NK cell activity, particularly in resourcelimited settings. Without a gold standard scoring protocol for diagnosing L-HLH, new and accurate biomarkers must be urgently developed to provide rapid confirmation of diagnosis

Table 3 – The most common lymphoma subtypes associated with lymphoma-associated hemophagocytic lym-

| T-cell and NK-cell<br>lymphomas                                                                                                                                                                        | B-cell lymphomas                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| NK/T-cell lymphoma, aggressive NK cell leukemia Peripheral T-cell lymphoma Anaplastic large cell lymphoma; Angioimmunoblastic T-cell lymphoma Panniculitis-like T-cell NHL Gamma-delta T-cell lymphoma | DLBCL Intravascular B-cell lymphoma Indolent lymphomas (FL, MZL) Burkitt lymphoma Hodgkin lymphoma |

ular lymphoma; MZL: marginal zone lymphoma.

and timely initiation of treatment towards improving out- 235 comes for patients with L-HLH.

237

253

262

286

#### **Treatment**

L-HLH is a life-threatening condition with challenging treatment. Most patients undergoing treatment are aged and very 239 ill, with chemotherapy and immunosuppressive therapy 240 increasing the risk of complications. The condition frequently 241 requires rapid intervention, so measures to improve health status before initiating treatment cannot be implemented. L-HLH treatment aims to control the overactive immune system, identify and treat modifying factors, optimize clinical 245 support, and treat lymphoma [5,34,35] (Figure 1). However, 246 due to the lack of prospective, randomized, or controlled clinical trials, there is no consensus on whether an HLH, malignancy-directed, or combined approach should be adopted first. Most available data derive from very small retrospective 250 series and case reports, with potential selection bias. The 251 strength of the recommendations is usually based on expert 252 opinions [11,20,36].

In general, the prognosis of patients with L-HLH is poor. 254 Different series in the literature show heterogeneous data, with mean OS ranging from one to 12 months. The main causes of death are lymphoma and associated infections 257 [9,22,37-42] (Table 4). The main contributing factors to the 258 unfavorable outcomes of L-HLH are late diagnosis and, consequently, a delay in providing adequate therapy, in addition to the heterogeneity of approaches resulting from the lack of 261 randomized studies [22,38,39,42-44].

Moreover, the subtype of lymphoma seems to be a relevant prognostic factor. Even in the context of L-HLH, B-cell 264 lymphomas are usually associated with a better prognosis 265 than NK/T-Cell lymphomas. In a multicenter retrospective study conducted in Japan with 132 cases of M-HLH, 108 patients had L-HLH, with 48.2% and 12.2% five-year OS for Bcell lymphoma and NK/T-cell lymphoma, respectively [44]. In 269 another study, Wang et al. assessed the role of chemotherapy 270 with a dose-adjusted etoposide (Etoposide) phosphate, prednisone, vincristine sulfate (Oncovin), cyclophosphamide, and doxorubicin hydrochloride (hydroxydaunorubicin) (DA-EPOCH) regimen in 55 patients with B-cell non-Hodgkin lymphoma (B-NHL), most of which were diffuse large B-cell lym- 275 phoma, and different subtypes of T-cell-NHL. The patients 276 with B-NHL were more tolerant to treatment and received 277 more treatment cycles, with five-year OS reaching 73 %. Conversely, patients with T-cell-NHL were less tolerant to treatment and responded less well to treatment, with only 3 % of 280 patients surviving after 12 months [45]. Whether this difference derives from the increased clinical aggressiveness of 282 NK/T-cell lymphoma or differences in the therapeutic 283 approach to these subtypes, particularly the availability of 284 anti-CD20 monoclonal antibodies for B-NHL, remains 285 unclear.

Historically, the treatment of choice for HLH is based on 287 the HLH-94 protocol, initially designed for children, but which 288 has since proved feasible in adults, albeit more toxic and with 289 lower response rates [37]. The main concept of this protocol is 290 the weekly administration of etoposide (Etoposide) combined 291

298

303

304

323

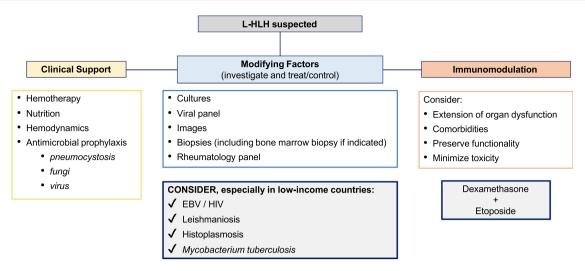



Figure 1 – General Principles of Lymphoma-associated hemophagocytic lymphohistiocytosis (L-HLH) Treatment. The mainstay of L-HLH treatment is to control the overactive immune system, identify and treat modifying factors, optimize clinical support, and treat lymphoma. EBV: Epstein-Barr virus.

Table 4 - Retrospective studies including lymphomaassociated hemophagocytic lymphohisticcytosis patients and overall survival outcomes.

| Study               | Population                                                                                     | Outcome                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Han AR, et al. 2007 | Retrospective, sin-<br>gle-center, Korea<br>n = 52 HLH<br>29 L-HLH<br>83 % T-cell<br>lymphomas | Median OS = 36<br>days                                                                                          |
| Li F, et el. 2014   | Retrospective, sin-<br>gle-center, China<br>n = 69 HLH<br>16 L-HLH, 15 T/NK-<br>cell lymphomas | Median OS = 37<br>days                                                                                          |
| Yu JT, et el. 2013  | Retrospective, single-center, China n = 30 L-HLH 69 % T-cell lymphomas                         | Median OS B- cell = 11 months Median OS T- cell = 3 months T-cell usually refractory to first line chemotherapy |
| Wei L, et al. 2020  | Retrospective, single-center, China n=43 All ENKTL                                             | OS 34.4 % at 6 months All received etoposide (Etoposide) and/or dexamethasone- based treatment                  |
| Jin Z, et al. 2020  | n = 8<br>All Hodgkin<br>lymphomas                                                              | 12-month<br>OS = 56.3 %                                                                                         |
| Li B, et al. 2020   | Retrospective, two<br>centers in China<br>n = 31<br>All B-cell NHL                             | Median OS = 1.5<br>months                                                                                       |

OS: overall survival; ENKTL: extranodal natural-killer T-cell lymphoma; NHL: non-Hodgkin lymphoma.

with dexamethasone, for its high potential for immunosuppression and, particularly, macrophage activity suppression, and the subsequent addition of cyclosporine (Cyclosporine capsules). A 6.2-year follow-up of the original study showed 54 % OS, which was higher for children undergoing consolidative allogeneic bone marrow transplantation (BMT) [46].

An updated HLH-2004 protocol has been proposed to improve response rates to HLH-94. The updated version primarily differed in bringing forward cyclosporine (Cyclosporine capsules) administration to the first few weeks of treatment. However, there was no additional clinical benefit. In fact, the strategy proved to be more toxic than the original protocol [47].

Although the HLH-94 protocol has not been validated for adult patients with L-HLH, some modified versions have been used. These modified versions consider the crucial role of etoposide (Etoposide) in depleting T-cell lymphocytes and suppressing immune hyperactivation, in addition to its antilymphoma effect [17,19,24]. Early etoposide (Etoposide) use combined with dexamethasone for immunomodulation in L-HLH leads to rapid control of hyperinflammation, an 312 improved clinical condition, and reduced risk of permanent 313 organ damage [15,48]. A Chinese retrospective study evalu- 314 ated 66 patients with L-HLH divided into two groups. The first 315 group included patients who had been treated with etoposide 316 (Etoposide)-based protocols, whereas the second group 317 included patients who had not been treated with the drug. 318 The results showed a significant difference in response rate 319 (73.1% versus 42.9%; p-value = 0.033) and median OS (25.8 320 months versus 7.8 months; p-value = 0.048) [49]. Bigenwald et 321 al. analyzed a cohort of 71 patients with L-HLH and observed that treatment with etoposide (Etoposide) was independently associated with improved prognosis [50].

The aggressive presentation of L-HLH is often associated with rapid clinical deterioration and significant laboratory changes. These changes delay lymphoma-specific treatment. Considering such factors, the MD Anderson Cancer Center 328 published guidelines suggesting a two-stage approach, which 329

333 334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349 350

351

352

353

354

355

356

357

358

has been widely adopted. The initial phase aims to control hyperinflammation and T-cell proliferation based on weekly etoposide (Etoposide) use in reduced doses (50-100 mg/m<sup>2</sup>) combined with corticosteroids. In the absence of an initial response, treatment is intensified with the liposomal doxorubicin, etoposide (Etoposide), and methylprednisolone (DEP) protocol. The second phase aims to treat the lymphoma as soon as clinical improvement and organ dysfunction reach permissive levels, notably lower ferritin, transaminases, and fibrinogen levels. Regimens with etoposide (Etoposide), such as EPOCH or DA-EPOCH, are recommended, along with rituximab in cases of B-NHL [15,19] (Figure 2). However, the use of high-dose regimens proved more toxic, with no additional benefit in NK/T-cell lymphomas [45].

Despite being included in the original HLH-94 protocol, the role of HSCT in adult HLH remains controversial and is reserved for cases of disease refractory to first-line therapy. In L-HLH, some studies suggest that autologous HSCT is beneficial as a first-line consolidation therapy, but data are scarce, thus preventing the generalization of this approach. Consolidation should follow the usual indications in lymphoma treatment and be discussed individually in severe cases [45,51]. Allogeneic HSCT should be considered for first-line candidates with NK/T-NHL, given the poor prognosis of this cohort, and in cases refractory to induction treatment, particularly in reduced-intensity conditioning (RIC) [12,15,16].

Considering that exacerbated cytokine production in HLH plays a key role in the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway [52], ruxolitinib, a JAK 1 and 2 inhibitor, has been tested as a potential targeted treatment, with promising results. Single-arm studies and some case series demonstrate that this drug is effective in secondary 361 HLH with different associated triggers in first-line settings and 362 refractory cases [53-55]. The most representative cohort is 363 found in a Chinese study on 70 patients with L-HLH, 36 of 364 whom were treated with the ruxolitinib, liposomal doxorubicin, etoposide (Etoposide), and dexamethasone (R-DED) protocol and 34 with etoposide (Etoposide) combined with dexamethasone, followed by lymphoma-specific treatment in both arms. 368 Patients in the R-DED group had \ higher overall response rate 369 (83.3 % versus 54.8 %; p-value = 0.011) and median OS (5 months 370 versus 1.5 months; p-value = 0.003). Moreover, this cohort was mainly composed of patients with T-cell lymphoma (78.6%), generally associated with a more reserved prognosis when associated with HLH [56].

The effect of anti-cytokine therapies on L-HLH is still unclear. 375 The interleukin-1 receptor agonist anakinra has been the most 376 frequently used in HLH associated with rheumatologic diseases (often termed macrophage activation syndrome). However, its efficacy in the context of malignancy is questionable [57,58]. Interleukin-6 blockade with tocilizumab has been extrapolated 380 from its use in cytokine release syndrome and coronavirus disease 2019, but data on HLH are limited, with a recent series 382 showing increased mortality from infections when tocilizumab 383 was used in the context of M-HLH [59].

374

378

384

385

388

389

HLH triggered by lymphoma treatment should be subjected to differential diagnosis for L-HLH. This condition has 386 been more frequently observed with the development and 387 increasingly widespread use of new therapies, such as checkpoint inhibitors, CAR T-cells, and bispecific antibodies. Mildto-moderate cytokine release syndrome is expected because of these therapies, with good response to tocilizumab and 391

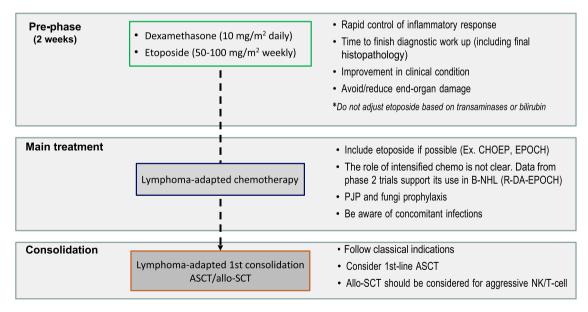



Figure 2-A suggested treatment approach for lymphoma-associated hemophagocytic lymphohistiocytosis. The two-stage approach aims to initially control hyperinflammation and T-cell proliferation based on weekly etoposide (Etoposide) and dexamethasone, followed by lymphoma treatment. CHOEP: Cyclophosphamide, Hydroxydaunorubicin, Oncovin, etoposide (Etoposide), Prednisone; EPOCH: etoposide (Etoposide), Prednisone, Oncovin (Vincristine), Cyclophosphamide, and Hydroxydaunorubicin (Doxorubicin); B-NHL: B-cell non-Hodgkin lymphoma; R-DA-EPOCH: Rituximab (Dose-Adjusted), etoposide (Etoposide), Prednisone, Oncovin (Vincristine), Cyclophosphamide, Hydroxydaunorubicin (Doxorubicin); ASCT: autologous stemcell transplantation; PJP: Pneumocystis jirovecii pneumonia; Allo-SCT: allogenic stem-cell transplantation; NK: Natural killer cells.

anakinra [60]. More severe cases that progress with HLH characteristics are less frequent and generally managed using anti-interleukin drugs, however there is the lack of robust data in the literature [61]. For other cases, first-line anti-interleukin therapy in L-HLH is not routinely recommended until more robust evidence demonstrates efficacy and safety.

Despite available therapies, most patients with L-HLH, particularly those with NK/T-cell lymphoma, fail to respond to first-line therapy or relapse after a brief response. Relapsed or refractory disease is associated with high mortality, usually due to the progression of HLH/lymphoma or secondary infections. No standard treatment is available, and, as a rule, the approach should be individualized, focusing on controlling the neoplasia and other concomitant predisposing conditions.

High-dose chemotherapy was evaluated using the DEP protocol in 63 patients, 29 of whom had L-HLH. The overall response rate was 76.2%, reaching 75.7% in L-HLH. The reported median OS was 28 weeks [62]. Other therapeutic options studied so far include ruxolitinib, alemtuzumab, and emapalumab, an anti-interferon gamma, albeit with little data on L-HLH [16,52,63]. A recent study investigated the use of emapalumab in patients with hematologic M-HLH, the majority of whom had L-HLH and had undergone extensive prior treatment. Emapalumab did not yield promising results, showing limited clinical efficacy in this population, although a few patients demonstrated improvements in HLH-related biomarkers [64].

Regardless of the therapeutic approach, treatments for refractory L-HLH are more toxic and less likely to lead to long-lasting remission. Therefore, allogeneic BMT should be considered for candidates with an available donor, preferably using reduced intensity conditioning (RIC). Studies have shown that this approach reaches 50–75 % OS and that the best results are found in combination with alemtuzumab prior to RIC [65,66].

High clinical suspicion, prompt immunosuppressive therapy, and adequate clinical support remain the pillars of successful L-HLH treatment. An improved understanding of the pathophysiology of this condition, elucidation of molecular pathways, and genetic alterations that may contribute to the exacerbated inflammatory response have spurred the development of individualized protocols and the exploration of new agents as adjuvants. Future collaborative studies are crucial for assessing the best therapeutic strategies, particularly in patients with HLH associated with NK/T-cell lymphoma, which has a poor prognosis.

### **Conflicts of interest**

439 none

- 440 REFERENCES
  - Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. The Lancet. 2014;383:1503–16.

- [2]. Emile JF, Abla O, Fraitag S, Horne A, Haroche J, Donadieu J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127:2672–81.
- [3]. Berliner H.A.S.N. Hemophagocytic lymphohistiocytosis. 2017:23.
- [4]. Al-Samkari H, Berliner N. Hemophagocytic lymphohistiocytosis. Annu Rev Pathol Mech Dis. 2018;13:27–49.
- [5]. Shakoory B, Geerlinks A, Wilejto M, Kernan K, Hines M, Romano M, et al. The 2022 EULAR/ACR points to consider at the early stages of diagnosis and management of suspected haemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). Ann Rheum Dis. 2023;82:1271–85.
- [6]. Schram AM, Comstock P, Campo M, Gorovets D, Mullally A, Bodio K, et al. Haemophagocytic lymphohistiocytosis in adults: a multicentre case series over 7 years. Br J Haematol. 2016:172:412-9.
- [7]. Griffin G, Shenoi S, Hughes GC. Hemophagocytic lymphohistiocytosis: an update on pathogenesis, diagnosis, and therapy. Best Pract Res Clin Rheumatol. 2020;34:101515.
- [8]. Allen CE, McClain KL. Pathophysiology and epidemiology of hemophagocytic lymphohistiocytosis. Hematology. 2015:2015:177–82.
- [9]. Machaczka M, Vaktnäs J, Klimkowska M, Hägglund H. Malignancy-associated hemophagocytic lymphohistiocytosis in adults: a retrospective population-based analysis from a single center. Leuk Lymphoma. 2011;52:613–9.
- [10]. Löfstedt A, Jädersten M, Meeths M, Henter JI. Malignancyassociated hemophagocytic lymphohistiocytosis in Sweden: incidence, clinical characteristics, and survival. Blood. 2024;143:233–42.
- [11]. La Rosée P, Horne A, Hines M, von Bahr Greenwood T, Machowicz R, Berliner N, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019;133:2465–77.
- [12]. Wang H, Xiong L, Tang W, Zhou Y, Li F. A systematic review of malignancy-associated hemophagocytic lymphohisticcytosis that needs more attentions. Oncotarget. 2017;8:59977–
- [13]. El-Mallawany NK, Curry CV, Allen CE. Haemophagocytic lymphohistiocytosis and Epstein–Barr virus: a complex relationship with diverse origins, expression and outcomes. Br J Haematol. 2022;196:31–44.
- [14]. Ferreri AJM, Dognini GP, Campo E, Willemze R, Seymour JF, Bairey O, et al. Variations in clinical presentation, frequency of hemophagocytosis and clinical behavior of intravascular lymphoma diagnosed in different geographical regions. Haematologica. 2007;92:486–92.
- [15]. Setiadi A, Zoref-Lorenz A, Lee CY, Jordan MB, Chen LYC. Malignancy-associated haemophagocytic lymphohistiocytosis. Lancet Haematol. 2022;9:e217–27.
- [16]. Lee JC, Logan AC. Diagnosis and management of adult malignancy-associated hemophagocytic lymphohistiocytosis. Cancers (Basel). 2023;15:1839.
- [17]. Skinner J, Yankey B, Lymphohistiocytosis Shelton BKHemophagocytic. AACN Adv Crit Care. 2019;30:151–64.
- [18]. Gadoury-Levesque V, Dong L, Su R, Chen J, Zhang K, Risma KA, et al. Frequency and spectrum of disease-causing variants in 1892 patients with suspected genetic HLH disorders. Blood Adv. 2020;4:2578–94.
- [19]. Daver N, McClain K, Allen CE, Parikh SA, Otrock Z, Rojas-Hernandez C, et al. A consensus review on malignancy-associated hemophagocytic lymphohistiocytosis in adults. Cancer. 2017;123:3229–40.
- [20]. Jordan MB, Allen CE, Weitzman S, Filipovich AH, McClain KL. How I treat hemophagocytic lymphohistiocytosis. Blood. 2011;118:4041–52.
- [21]. Carvelli J, Piperoglou C, Farnarier C, Vely F, Mazodier K, 5 Audonnet S, et al. Functional and genetic testing in adults 5

549

550

551

563

564

565

566 567

- with HLH reveals an inflammatory profile rather than a cyto-512 toxicity defect. Blood. 2020;136:542-52. 513
- [22]. Li B, Guo J, Li T, Gu J, Zeng C, Xiao M, et al. Clinical character-514 515 istics of hemophagocytic lymphohistiocytosis associated 516 with non-hodgkin B-cell lymphoma: a multicenter retrospective study. Clin Lymphoma Myeloma Leuk. 2021;21:e198-205. 517
- 518 [23]. Knauft J, Schenk T, Ernst T, Schnetzke U, Hochhaus A, La Rosée P, et al. Lymphoma-associated hemophagocytic lym-519 520 phohistiocytosis (LA-HLH): a scoping review unveils clinical 521 and diagnostic patterns of a lymphoma subgroup with poor 522 prognosis. Leukemia. 2024;38:235-49.
- [24]. Schram AM, Berliner N. How I treat hemophagocytic lympho-523 524 histiocytosis in the adult patient. Blood. 2015;125:2908-14.
- [25]. Palazzi DL, McClain KL, Kaplan SL. Hemophagocytic syn-525 526 drome in children: an important diagnostic consideration in fever of unknown origin. Clin Infect Dis. 2003;36:306-12. 527
- 528 [26]. Henter JI, Horne A, Aricó M, Egeler RM, Filipovich AH, Ima-529 shuku S, et al. HLH-2004: diagnostic and therapeutic guide-530 lines for hemophagocytic lymphohistiocytosis. Pediatr Blood 531 Cancer. 2007;48:124-31.
- [27]. Henter JI. Treatment of hemophagocytic lymphohistiocyto-532 533 sis with HLH-94 immunochemotherapy and bone marrow transplantation. Blood. 2002;100:2367-73. 534
- 535 [28]. Fardet L, Galicier L, Lambotte O, Marzac C, Aumont C, Chahwan D, et al. Development and validation of the HScore, a 536 537 score for the diagnosis of reactive hemophagocytic syndrome: score for reactive hemophagocytic Syndrome. Arthri-538 tis Rheumatol. 2014;66:2613-20. 539
- [29]. Debaugnies F, Mahadeb B, Ferster A, Meuleman N, Rozen L, 540 541 Demulder A, et al. Performances of the H-score for diagnosis of hemophagocytic lymphohistiocytosis in adult and pediat-542 ric patients. Am J Clin Pathol. 2016;145:862-70. 543
- 544 [30]. Croden J, Grossman J, Sun H. External validation of the HLH-545 2004 diagnostic criteria and H-score for diagnosis of hemophagocytic lymphohistiocytosis adults. 546 in 547 2020;136:44-5
  - [31]. Tamamyan GN, Kantarjian HM, Ning J, Jain P, Sasaki K, McClain KL, et al. Malignancy-associated hemophagocytic lymphohistiocytosis in adults: relation to hemophagocytosis, characteristics, and outcomes. Cancer. 2016;122:2857-66.
- 552 [32]. Zoref-Lorenz A, Murakami J, Hofstetter L, Iyer S, Alotaibi AS, 553 Mohamed SF, et al. An improved index for diagnosis and 554 mortality prediction in malignancy-associated hemophagocytic lymphohistiocytosis. Blood. 2022;139:1098-110. 555
- 556 [33]. Verkamp B, Zoref-Lorenz A, Francisco B, Kieser P, Mack J, Blackledge T, et al. Early response markers predict survival 557 558 after etoposide-based therapy of hemophagocytic lympho-559 histiocytosis. Blood Adv. 2023;7:7258-69.
- [34]. Chinnici A, Beneforti L, Pegoraro F, Trambusti I, Tondo A, 560 Favre C, et al. Approaching hemophagocytic lymphohistiocy-561 562 tosis. Front Immunol. 2023;14:1210041.
  - [35]. Hines MR, Von Bahr Greenwood T, Beutel G, Beutel K, Hays JA, Horne A, et al. Consensus-based guidelines for the recognition, diagnosis, and management of hemophagocytic lymphohistiocytosis in critically ill children and adults. Crit Care Med. 2022;50:860-72.
- 568 [36]. Ehl S, Astigarraga I, von Bahr Greenwood T, Hines M, Horne A, Ishii E, et al. Recommendations for the use of etoposide-569 based therapy and bone marrow transplantation for the 570 571 treatment of HLH: consensus statements by the HLH Steering Committee of the Histiocyte Society. J Allergy Clin Immu-572 nol Pract. 2018;6:1508-17. 573
- [37]. Bubik RJ, Barth DM, Hook C, Wolf RC, Muth JM, Mara K, et al. 574 575 Clinical outcomes of adults with hemophagocytic lymphohistiocytosis treated with the HLH-04 protocol: a retrospec-576 577 tive analysis. Leuk Lymphoma. 2020;61:1592-600.
- 578 [38]. George M. Hemophagocytic lymphohistiocytosis: review of 579 etiologies and management. J Blood Med. 2014: 69.

[39]. Li F, Li P, Zhang R, Yang G, Ji D, Huang X, et al. Identification 580 of clinical features of lymphoma-associated hemophagocytic syndrome (LAHS): an analysis of 69 patients with hemophagocytic syndrome from a single-center in central region of China. Med Oncol. 2014;31:902.

581

583

584

585

586

587

588

589

590

591

592

593

594

596

597

598

599

600

602

603

604

605

606

607

608

609

610

611

612 613

614

616

617

618

621

622

623

624

626

627

630

631

633

634

636

637

638

640

641

642

643

644

645

- [40]. Yu JT, Wang CY, Yang Y, Wang RC, Chang KH, Hwang WL, et al. Lymphoma-associated hemophagocytic lymphohistiocytosis: experience in adults from a single institution. Ann Hematol. 2013:92:1529-36.
- [41]. Wei L, Yang L, Cong J, Ye J, Li X, Yao N, et al. Using etoposide + dexamethasone-based regimens to treat nasal type extranodal natural killer/T-cell lymphoma-associated hemophagocytic lymphohistiocytosis. J Cancer Res Clin Oncol. 2021:147:863-9.
- [42]. Jin Z, Wang Y, Wei N, Wang Z. Hodgkin lymphoma-associated hemophagocytic lymphohistiocytosis—A dangerous disease. Ann Hematol. 2020;99:1575-81.
- [43]. Jin Z, Wang Y, Wang J, Wu L, Pei R, Lai W, et al. Multivariate analysis of prognosis for patients with natural killer/T cell lymphoma-associated hemophagocytic lymphohistiocytosis. Hematology. 2018;23:228-34.
- [44]. Ishii E, Ohga S, Imashuku S, Yasukawa M, Tsuda H, Miura I, 601 et al. Nationwide Survey of hemophagocytic lymphohistiocytosis in Japan. Int J Hematol. 2007;86:58-65.
- [45]. Liang JH, Wang L, Zhu HY, Qian J, Liao H, Wu JZ, et al. Doseadjusted EPOCH regimen as first-line treatment for nonhodgkin lymphoma-associated hemophagocytic lymphohistiocytosis: a single-arm, open-label, phase II trial. Haematologica. 2020;105:e29-32.
- Trottestam H, Horne A, Aricò M, Egeler RM, Filipovich AH, Gadner H, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood. 2011;118:4577-84.
- [47]. Bergsten E, Horne A, Aricó M, Astigarraga I, Egeler RM, Filipovich AH, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the 615 cooperative HLH-2004 study. Blood. 2017;130:2728-38.
- [48]. Cron RQ, Goyal G, Chatham WW. Cytokine Storm Syndrome. Annu Rev Med. 2023:74:321-37.
- [49]. Song Y, Wang J, Wang Y, Wu L, Wang Z. Requirement for 619 containing etoposide in the initial treatment of lymphoma 620 associated hemophagocytic lymphohistiocytosis. Cancer Biol Ther. 2021;22:598-606.
- [50]. Bigenwald C, Fardet L, Coppo P, Meignin V, Lazure T, Fabiani B, et al. A comprehensive analysis of Lymphoma-associated haemophagocytic syndrome in a large French multicentre cohort detects some clues to improve prognosis. Br J Haematol. 2018:183:68-75.
- [51]. Song Y, Yin Q, Wang J, Wang Z. Autologous hematopoietic 628 stem cell transplantation for patients with lymphoma-associated hemophagocytic lymphohistiocytosis. Cell Transplant. 2021;30:096368972110570.
- [52]. Keenan C, Nichols KE, Albeituni S. Use of the JAK inhibitor 632 Ruxolitinib in the treatment of hemophagocytic lymphohistiocytosis. Front Immunol. 2021;12:614704.
- [53]. Ahmed A, Merrill SA, Alsawah F, Bockenstedt P, Campagnaro 635 E, Devata S, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 2019;6:e630-7.
- [54]. Wang H, Gu J, Liang X, Mao X, Wang Z, Huang W. Low dose 639 ruxolitinib plus HLH-94 protocol: a potential choice for secondary HLH. Semin Hematol. 2020;57:26-30.
- [55]. Hansen S, Alduaij W, Biggs CM, Belga S, Luecke K, Merkeley H, et al. Ruxolitinib as adjunctive therapy for secondary hemophagocytic lymphohistiocytosis: a case series. Eur J Haematol. 2021;106:654-61.
- [56]. Zhou L, Liu Y, Wen Z, Yang S, Li M, Zhu Q, et al. Ruxolitinib 646 combined with doxorubicin, etoposide, and dexamethasone 647

674

675

676

678

679

680

681

682

683

684

686

687

688

690

691

648 for the treatment of the lymphoma-associated hemophago-649 cytic syndrome. J Cancer Res Clin Oncol. 2020;146:3063-74.

650 651

652

653

654

655 656

657

660

661

662

663 664

665

- Kumar B, Aleem S, Saleh H, Petts J, Ballas ZK. A personalized diagnostic and treatment approach for macrophage activation syndrome and secondary hemophagocytic lymphohistiocytosis in adults. J Clin Immunol. 2017;37:638-43.
- Baverez C, Grall M, Gerfaud-Valentin M, De Gail S, Belot A, Perpoint T, et al. Anakinra for the treatment of hemophagocytic lymphohistiocytosis: 21 cases. J Clin Med. 2022;11:5799.
- Kim JY, Kim M, Park JK, Lee EB, Park JW, Hong J. Limited effi-658 cacy of tocilizumab in adult patients with secondary hemo-659 phagocytic lymphohistiocytosis: a retrospective cohort study. Orphanet J Rare Dis. 2022;17:363.
  - Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019:25:625-38.
- [61]. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, 666 Locke FL, et al. Chimeric antigen receptor T-cell therapy — 667 Assessment and management of toxicities. Nat Rev Clin 668 669 Oncol. 2018:15:47-62.

- [62]. Wang Y, Huang W, Hu L, Cen X, Li L, Wang J, et al. Multicenter study of combination DEP regimen as a salvage therapy for adult refractory hemophagocytic lymphohistiocytosis. Blood. 2015;126:2186-92.
- [63]. Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood. 2019;134:1783-6.
- [64]. Johnson WT, Epstein-Peterson ZD, Ganesan N, Pak T, Chang T, Dao P, et al. Emapalumab as salvage therapy for adults with malignancy-associated hemophagocytic lymphohistiocytosis. Haematologica. 2024. [Internet][citado 11 de abril de 2025]; Disponível em https://haematologica.org/article/view/ haematol.2023.284179.
- [65]. Park HS, Lee JH, Lee JH, Choi EJ, Ko SH, Seol M, et al. Fludarabine/Melphalan 100 mg/m2 conditioning therapy followed by allogeneic hematopoietic cell transplantation for adult patients with secondary hemophagocytic lymphohistiocytosis. Biol Blood Marrow Transplant. 2019;25:1116-21.
- [66]. Gooptu M, Kim HT, Jacobsen E, Fisher DC, LaCasce A, Ho VT, et al. Favorable outcomes following allogeneic transplantation in adults with hemophagocytic lymphohistiocytosis. Blood Adv. 2023;7:2309-16.

Please cite this article as: T.d.S.P. Marcondes et al., Lymphoma-associated hemophagocytic lymphohistiocytosis, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106087