uma fração do produto de leucoaférese ou da medula óssea. Para todos os produtos foi realizada a enumeração do CD3 por citometria de fluxo. A coleta de sangue periférico é realizada com anticoagulante ACD - A. O Centro de Processamento celular (CPC) realiza os cálculos do produto para o transplante de medula óssea e a celularidade excedente é criopreservada para doses de DLI conforme o protocolo clínico. As célulastronco coletadas por leucoaféreses foram centrifugadas 3.000 rpm, 20 min, temperature ambiente e a porção celular foi criopreservada. A medula óssea teve ajuste do hematócrito para < 25%, adicionado HAES 6% Voluven® na proporção 1:8. As bolsas foram centrifugadas na posição invertida a 1700 rpm ou 840 g, 5 minutos, temperatura ambiente, sem freio. A criopreservação dos produtos foi com solução final de HAES 6%, Albumina 4% e DMSO 5% e armazenadas em ultrafreezeres. No dia da infusão, foi realizado o degelo em banho maria à 37°C. A contagem das células nucleadas ocorreu antes do processamento e após degelo para cálculo estimado da dose de CD3 a ser infundido. Resultados: No período de 1999 a 2025 processamos linfócitos para 51 pacientes: 36 pacientes realizaram TMO aparentados e 15 não aparentados; 18 coletados do sangue periférico, 22 de leucoaférese e 11 da medula óssea. Os diagnósticos foram 43 Leucemias, 2 Anemia de Fanconi, 2 Imunodeficiência, 2 Linfoma de Hodgkin, 2 Sindrome mielodisplásica. A mediana de idade dos pacientes foi 11 anos (1-18) e peso 31 kg (7-80). A mediana de idade dos doadores foi 24 anos (11 meses -55 anos) e peso 68 kg (10-114 kg). As doses de DLI do sangue periférico foram 1 a 6, leucoaférese 1 a 4 doses e apenas uma dose quando medula óssea. Discussão e conclusão: O planejamento de uma coleta de células-tronco hematopoéticas alogênicas com celularidade maior que o alvo para o transplante de medula óssea é factível, para processar e criopreservar doses de linfócitos de doadores pequenos ou com dificuldades de comparecimento ao serviço, para o planejamento da profilaxia ou tratamento da recidiva da doença dos pacientes oncohematógicas.

https://doi.org/10.1016/j.htct.2025.105543

ID - 1095

PRODUÇÃO ESCALONÁVEL DE VETOR LENTIVIRAL CLÍNICO CAR ANTI-CD19 DE QUARTA GERAÇÃO COEXPRESSANDO IL-15/ IL-15RA PARA TERAPIAS CELULARES COM NK

MS Abreu-Neto, R Rossetti, PNM Costa, TC Heluy, H Brand, VP Castro

Hemocentro Ribeirão Preto, Ribeirão Preto, SP, Brasil

Introdução: Vetores lentivirais constituem ferramentas essenciais em terapias avançadas, como células CAR-T/NK e terapias gênicas, por possibilitarem modificação genética estável de células-alvo. O desenvolvimento de plataformas nacionais para sua produção é estratégico, pois reduz a dependência de importações, diminui custos e fortalece a capacidade do país em terapias avançadas. A transdução com lentivírus é amplamente empregada em estudos clínicos com

células CAR devido à sua alta eficiência em células quiescentes ou em divisão e à integração genômica que garante expressão sustentada. A produção de vetores lentivirais envolve etapas upstream, com transfecção de células empacotadoras e coleta do sobrenadante viral, e downstream, para purificação e concentração das partículas. A filtração tangencial (TFF) aplicada no downstream permite concentração, troca de tampão e preservação da integridade viral em processo escalonável e compatível com uso clínico. Objetivos: Este estudo teve como objetivo estabelecer uma plataforma nacional para produção de vetor lentiviral clínico de quarta geração, projetado para expressão de CAR anti-CD19 com coexpressão de IL-15/IL-15 $R\alpha$ em células NK. Material e métodos: No upstream, células HEK293-T/17 em sistema multicamadas Cell Factory foram transfectadas com 0,34 µg/cm² de plasmídeo (3:1:1:1; CAR e acessórios 1-3) e agente de transfecção (1:1 DNA:PEI). Após 48 h, o sobrenadante viral foi coletado (n = 3 lotes) e clarificado em filtro de 0,5 μ m. No downstream, utilizou-se o sistema KrosFlo® KR2i TFF (Repligen) em duas etapas: concentração inicial (10-11x)/diafiltração (7 DV) com membrana 500 kD MiniKros e concentração final (10-25x) com membrana 500 kD MidiKros. Resultados: Os rendimentos médios nas diferentes etapas foram: clarificação 108,6% (\pm 26,2%), concentração inicial 56,7% (\pm 20,1%), diafiltração 84,5% (\pm 47,3%) e concentração final 126,4% (\pm 78,6%). O vetor final apresentou título médio de $1,05\times10^7$ TU/ mL e pureza adequada para uso clínico, com remoção de 97% do DNA residual e 98% da proteína de célula hospedeira. Ensaios funcionais demonstraram transdução eficiente de células NK primárias (MOI 10), com frequências de 42,3% (± 0,57%) e 14,3% (\pm 1,13%) de células NK-CAR anti-CD19 nos dois lotes testados. Discussão e conclusão: A plataforma desenvolvida gera vetores lentivirais escalonáveis e de alta qualidade compatíveis com Boas Práticas de Fabricação (BPF), constituindo um passo estratégico para produção nacional de células CAR-NK de quarta geração, com impacto direto no avanço de terapias celulares para leucemias e linfomas no Brasil. Apoio financeiro: PRONON 25000.021774/2019-13; FINEP 01.24.0656.00 Ref: 0238/24; FAPESP 2020/07055-9.

https://doi.org/10.1016/j.htct.2025.105544

ID - 601

PROGNOSTIC SIGNIFICANCE OF INTESTINAL PERMEABILITY IN BRAZILIAN PATIENTS UNDERGOING ALLOGENEIC STEM CELL TRANSPLANTATION

NL Silva ^a, ASF Júnior ^a, LS Souza ^a, DAN Alvarez ^a, BF Silva ^a, I Colturato ^b, JVP Feliciano ^c, GN Barros ^d, P Scheinberg ^e, GLV Oliveira ^a

^a Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil

^b Hospital Amaral Carvalho, Jaú, SP, Brazil

^c Fundação Faculdade Regional de Medicina (FUNFARME), São José do Rio Preto, SP, Brazil