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A B S T R A C T

Beta-thalassemia is a genetic disorder that significantly burdens healthcare systems glob-

ally. This inherited blood disorder, categorized into beta-thalassemia and alpha-thalasse-

mia, results in insufficient globin production, leading to anemia and iron overload from

frequent transfusions. Severe cases, known as thalassemia major, require regular blood

transfusions. Beyond clinical suspicion and biochemical tests, molecular techniques are

essential for confirming the diagnosis and guiding treatment. Advancedmolecular profiling

methods such as Polymerase Chain Reaction (PCR), Multiplex Ligation-dependent Probe

Amplification (MLPA), Next-Generation Sequencing (NGS), Third-Generation Sequencing

(TGS), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are effective

in detecting mutations. Epigenetic factors also play a crucial role, driving the development

of epidrugs for targeted therapy. This review covers various molecular techniques, estab-

lished gene-editing methods, epigenetic mechanisms, and the impact of artificial intelli-

gence on thalassemia management. It highlights the importance of selecting precise and

sensitive molecular tools for detecting thalassemia gene mutations and stresses the need

to make these testing methods accessible in resource-limited clinical settings.
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Introduction

Thalassemia, a monogenic disorder among hemoglobinopa-

thies, has a universally recessive inheritance affecting both

children and adults worldwide. In India, beta-thalassemia

accounts for 25 % of the global burden.1 Beta-thalassemia is

particularly prevalent in Mediterranean countries, Middle

East, and South Asia, regions historically affected by malaria.

In India, the highest prevalence is found in the northern

states of Punjab, Haryana, and Delhi, and the western states

of Maharashtra and Gujarat, with the lowest prevalence in

the southern states of Tamil Nadu and Karnataka.2,3 The chal-

lenges faced by the patients and their families due to this dis-

ease are substantial. Affected individuals require lifelong

regular blood transfusions and chelation therapy, leading to

complications such as heart disease, liver damage, and endo-

crine disorders.4 In rural areas, the cost of the treatment,

medical care and testing services pose a significant
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constraint. In urban areas, too, the disease burden signifi-

cantly impacts the health system and resources.

Thalassemias are clinically categorized as thalassemia

major (TM), thalassemia intermedia (TI) and thalassemia

minor or trait, based on the severity. TM is the most serious

form, requiring regular treatment. Thalassemia is classified

into two based on the globin gene defect: alpha-thalassemia

(Hemoglobin Subunit Alpha 1: HBA1 and Hemoglobin Subunit

Alpha 2: HBA2 genes) and beta-thalassemia (Hemoglobin Sub-

unit Beta: HBB gene). In beta-thalassemia, substitutions of

bases occur in the introns, exons and promotor regions of the

beta-globin genes, whereas in alpha-thalassemia, base dele-

tions lead to the removal of alpha genes.5 The alpha gene is

located on chromosome 16p13.3, and the beta gene is clus-

tered among other hemoglobin genes on chromosome

11p15.15.

The diagnosis and detection of thalassemia involve sev-

eral laboratory examinations such as complete blood count,

blood smear, iron studies, hemoglobinopathy studies, DNA

analysis by genetic testing, and prenatal genetic testing.6

Based on the clinical, hematological and molecular features,

beta-thalassemia is categorized into two distinct types based

on blood transfusion: non-transfusion-dependent b-thalasse-

mia (NTDT), which is TI, and transfusion-dependent b-thalas-

semia (TDT), which is TM. Preliminary screening

methodologies are economical and feasible for mass coverage

of the disease-causing genes in the society, helpful in triaging

patients who require a DNA analysis through superior and

high-throughput technology. However, in routine clinical

practice, mutation testing for these genes is not commonly

practiced. Instead, driven by market forces, patients are often

directly referred for NGS testing assuring one-stop solutions.

Therefore, it is advocated that discussions between clinical

genetic departments and diagnosticians should prioritize less

expensive methodologies with superior specificity and reli-

ability in terms of test quality to triage patients and effec-

tively utilize NGS technology.7 Hence this review aims to

study different molecular methodologies and high-

throughput tests affecting the detection level of thalassemia,

a hematological disorder of high societal impact, and its

future implications in clinical practice.

Molecular profiling of thalassemia

Various molecular profiling methods exist for diagnosis, each

with its limitations. The available molecular genetic testing

for thalassemia is single gene testing.8 For beta-thalassemia,

HBB gene sequencing analysis is offered to detect mutations.

However, due to the identical length of the HBA1 and HBA2

genes, sequencing analysis for alpha-thalassemia has been

challenging.9 Protein-based detection methods such as elec-

trophoresis and chromatography are commonly used in rou-

tine practice. To prevent adverse outcomes of globin genetic

disorders, along with genetic confirmation in a given patient,

genetic testing is important for potential carriers in prenatal

and premarital contexts.10 The list of molecular techniques

used for detecting thalassemia is summarized in Table 1 and

Figure 1.

Recent molecular approaches

Advancements in techniques for detecting thalassemia

include NGS, which can accurately distinguish rare mutations

and reduce misdiagnoses. Extensive work has been con-

ducted on alpha- and beta-thalassemia mutation screening

using NGS technology over the past few years. While whole

genome sequencing, exome sequencing, RNA sequencing,

and methylation sequencing are widely used NGS applica-

tions, targeted sequencing is the most effective and economi-

cal approach for thalassemia, covering indels and point

mutations in the HBA, HBB, Hemoglobin Subunit Delta (HBD)

and Hemoglobin Subunit Gamma (HBG) genes.11 Conventional

methods only detect specific mutations targeted by primer

sets, but NGS provides a more extensive and thorough analy-

sis of the individual’s genetic make-up in a single test and

Table 1 – List of molecular techniques, their application and disadvantages.

Technique Application Disadvantages

Sanger sequencing Detects all possible mutations in an individ-

ual.

Not useful for detecting large deletions

Allele-specific methodologies (allele-spe-

cific polymerase chain reaction)

Useful in genetically homogeneous popula-

tions, high throughput and economical

Less useful in ethnically diverse

populations

Gap-Polymerase Chain Reaction Rapid andmultiplexed Cannot detect point mutations, requires

specific primers

Multiplex ligase-dependent probe amplifi-

cation (MLPA)

Can cover large chromosomal regions for

deletion analysis

Low resolution, cannot detect point muta-

tions or small deletions

Next-generation sequencing (NGS) Has potential to characterize mutations and

deletions throughout all globin genes in

parallel

Needs to create awareness about the

technique

Comparative genomic hybridization (CGH) covers large chromosomal regions for dele-

tion analysis, high resolution and has exact

breakpoints

Not reliable due to cross-hybridization

Mass spectrometry Hemoglobin variants can be characterized

rapidly

Yet to be approved in routine diagnostics

Artificial Intelligence (AI) Differentiates between thalassemia and other

microcytic anemia by using different algo-

rithms and web-based prediction tools.

Not yet approved in routine diagnostics
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can detect multiple mutations from a single gene or multiple

genes. NGS is more reliable in characterizing the disease

genotype, and its deep sequencing is used to identify muta-

tions in diagnosing many human genetic disorders.12

Recently, Gupta et al. developed a scalable non-invasive

amplicon-based precision sequencing (SNAPseq) assay sys-

tem, a unique strategy-based NGS approach to detect virtually

all HBB mutations. The SNAPseq assay utilizes a simple,

extraction-free non-invasive buccal swab crude lysate or fin-

ger prick blood sample directly for detecting allele-specific

beta-thalassemia and sickle cell disorder genotypes. Their

study showed a simplified sampling procedure combined

with an NGS approach to develop and optimize pipelines to

prioritize pathogenic mutations with allele-specific sensitiv-

ity. They concluded that their assay could serve as a gold

standard technique applicable for precise diagnosis of beta-

hemoglobinopathies with high sensitivity.13

Third-Generation Sequencing (TGS) - the next era of DNA

sequencing technology, has gained prominence in molecular

biology, studying genomes, transcriptomes, and metage-

nomes without the need for clonal amplification. Oxford

Nanopore Technology (OCT) and the Pac-Bio Single Molecule

Real-Time Sequencing (SMRT) are the two TGS technologies

currently available. The major challenge in TGS is the accu-

rate identification of the nucleotide bases due to the instabil-

ity of the molecular machinery involved, resulting in higher

error rates than NGS. Several studies have clinically utilized

the TGS approach to identify both alpha- and beta-thalasse-

mia genetic carrier statuses, with results showing complete

concordance with conventional molecular techniques.14,15 A

study conducted by Zhen-min et al.17 reported rare mutations

in HBA, HBB, HBD, and Hemoglobin H genes in children with

mild anemia. They identified rare mutations in children with

suspected transfusion-dependent thalassemia (TDT), neces-

sitating long-term blood transfusions using the TSG

approach. Zhuang et al.16 also reported identifying rare var-

iants in the HBA gene by TGS technology. Hence, TSG can

serve as a diagnostic tool to effectively screen thalassemia

carrier trait in at-risk individuals or couples.16-19

The innovation of the CRISPR-associated protein 9

(CRISPR-Cas9) system, a genome editing technology, revolu-

tionized biomedical research. This system is widely used for

DNA base editing, RNA targeting, gene expression regulation

and epigenetic editing for preventing and managing various

genetic diseases. Though the technology has many chal-

lenges, due to its ease of use, higher efficiency, specificity and

cost-effectiveness, it is more extensively used than other

genome editing techniques.20 Current curative stem cell or

bone marrow transplantation for thalassemia has the limita-

tion of obtaining an HLA matched donor within the family or

an unrelated individual. Graft-versus-host disease and the

high cost compared to gene editing make gene editing a

Figure 1 – Illustration of the different molecular tools for diagnosis of thalassemia.
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potential curative option.21 CRISPR-Cas9 gene editing technol-

ogy is applied to correct the alpha- or beta-globin chain imbal-

ance in thalassemia hematopoietic stem/progenitor cells by

down regulating the alpha-globin locus to control HBB gene

expression.22 An editorial by Parums discusses the first regu-

latory approval for CRISPR-Cas9 gene editing therapy, Cas-

gevy (exagamglogene autotemcel) and Lyfgenia

(lovotibeglogene autotemcel), for treating patients with trans-

fusion-dependent beta-thalassemia and sickle cell disease.

He discusses the therapeutic challenges and outcomes of

patients treated with CRISPR-Cas9 therapy.23 The end-point

of several clinical trial studies will warrant the treatment

management of thalassemia and sickle cell anemia through

gene editing therapy. Still, gene editing technology has limita-

tions, which will be overcome by the new prime editing tech-

nology.24 Advancements in gene editing technology, such as

CRISPR, may soon surpass allogeneic transplants as the pre-

ferred treatment for patients with sickle cell disease or thalas-

semia. These cutting-edge techniques offer the potential for

more precise and personalized treatments, potentially reduc-

ing the risks and complications associated with traditional

transplant methods.

Epigenetic aspect of thalassemia

Developments in the field of medical genetics focus more on

the regulatory machinery of gene expression through epige-

netics, thereby providing a new entity of therapeutic targets

for treating various genetic disorders. The alteration of gene

activity without the change in DNA sequence by histonemod-

ification and DNA methylation is an epigenetic concept. Epi-

genetic modifiers play a significant role in alpha- and beta-

thalassemia disorders. In alpha-thalassemia, the common

mutation types are often deletions affecting one or more of

the alpha-globin genes (HBA1 and HBA2) or one pseudogene

with a homozygous configuration of the allele, which results

in the hydrops fetalis form. The DNA methylation level in

association with this mutation results in a differential meth-

ylation pattern between placenta and leukocytes.25 In beta-

thalassemia, the epigenetic modification changes fetal hemo-

globin (Hb F) to adult hemoglobin (Hb A). The delay in conver-

sion of Hb F to Hb A is due to the regulatory single nucleotide

polymorphism (r-SNP), which leads to clinical complexity of

the disease by keeping Hb F levels high. The DNAmethylation

in beta-thalassemia down regulates the beta-globin gene and

up regulates the production of the gamma-globin gene with

co-inheritance of alpha-thalassemia, which improves beta-

thalassemia severity. The enhancement of gamma-globin

gene expression in beta-thalassemia is due to the demethyla-

tion of the promotor Cytosine-phosphate-Guanine (CpG) sites

in erythroid progenitor cells26. In a study by Yassim et al.27 it

was found that the Immunoglobin superfamily 4 (IGSF4) has

an important role in the synthesis of the globin chain. Due to

the methylation of IGFS4, the synthesis of the globin chain is

affected by its interaction with other genes in the regulation

network of globin expression.

This disease-causing epigenetic change can be revisited

by the use of epigenome editing to control the regulation of

gene expression by writing and erasing the epigenetic modi-

fiers. Some of the epigenetic modifiers include DNA

modifiers, mRNA modifiers and histone protein modifiers.

The IGSF4 and La ribonucleo protein 2 (LARP2) modifiers

were hypermethylated in beta-thalassemia major

patients.26 The development of epigenetic drugs called epi-

drugs was utilized initially to reverse the nature of epige-

netic alterations. Epidrugs target different epigenetic marks

and inhibit disease-causing alterations. Their effect is not

sequence-specific and can lead to cell death due to a broad

alteration of gene expression.28 To assuage this effect, epige-

nome editing technology has upsurged in the medical field

as a solution for treatment of rare genetic disorders. In beta-

thalassemia, zinc finger protein (ZF)-based epigenome edi-

tors were fused to epigenetic modifiers to achieve activation

of specific endogenous genes and modulate the gene expres-

sion. The limitation of using the zinc finger-based editors is

their low specificity and binding to off-target sites.29 Hence,

other epigenome editing platforms with higher DNA recog-

nition capacities play a crucial role in the stable regulation

of gene expression, namely Transcription activator-like

effectors (TALE) and CRISPR-Cas9. However, they still have

limitations. Comparatively, CRISPR-Cas9-based epigenome

editors present several advantages over TALE and ZFs. With

the use of only one Cas9 enzyme, the CRISPR-Cas9 system

facilitates simultaneous epigenome editing of multiple

regions.30 Several studies were conducted to investigate the

beta-globin gene regulation mechanism using artificial tran-

scription factors and epigenome editors to reactivate human

gamma- or beta-globin gene expression.31−34 To step into

therapeutics, several paces are needed to be taken care of

for the usage of epigenome editing, and it is necessary to

develop protocols for the delivery system.

Non-coding RNA in thalassemia

The non-coding RNA (ncRNA) is a functional RNA molecule

and constitutes a heterogeneous group of transcripts not

translated into proteins. The two major types of ncRNA are

small RNA (sRNA) and long non-coding RNA (lncRNA). sRNA

are important regulatory molecules in the control of gene

expression at both transcription and post-transcriptional

level by gene silencing or RNA silencing.35 The types of sRNA

include microRNA (miRNA), small interfering RNA (siRNA),

small nuclear RNA (snRNA), small nucleolar RNA (snoRNA)

and piwi-interacting RNA (piRNA) which are majorly involved

in regulating various biological processes. lncRNA, including

intergenic, intronic, sense and antisense lncRNAs, are

reported to be the most prevalent and functionally diverse

members of ncRNA.36 The role of lncRNA can be perceived in

gene expression, genomic imprinting, nuclear organization,

gene dosage compensation, chromatin structure modulation,

RNA translation, splicing and epigenetic regulation.37

The role of epigenetic regulators and modifiers, including

lncRNA in hemoglobin synthesis and the role of dysregulated

lncRNA have been studied extensively, but their role in

changing the expression of the human globin gene has not

been studied in depth.38 In normal cells, lncRNA prevents the

binding of miRNA to maintain the Hb F levels, whereas in dis-

ease conditions like beta-thalassemia, due to dysregulated

lncRNAs the level of Hb F is elevated.39 The possible mecha-

nism for high levels of Hb F is the activation of Hemoglobin
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Subunit Epsilon 1 (HbE1) and haemopoietic cell lineage-induc-

ible molecule by lncRNA. Several studies have reported vari-

ous mechanisms of regulation of lncRNA in the expression of

the gamma-globin gene.40−43 The lncRNAs, like Metastasis-

Associated Lung Adenocarcinoma Transcript 1 (MALAT1),

Myocardial Infarction Associated Transcript (MIAT), Anti-

sense Non-coding RNA in the Inhibitors of cyclin-dependent

kinase 4 Locus (H19 and ANRIL), are differentially expressed

in beta-thalassemia, thereby acting in a putative role in beta-

thalassemia pathophysiology.43,44

Apart from lncRNA, miRNA plays a major role in hemoglo-

binopathies, such as regulating gene expression, erythroid

cell mechanism, iron hemostasis, and oxidative cell damage.

miR15a/16−1, miR-486−3p, miR-26b, miR-199b-5p, miR-210, miR-

34a, miR-138, miR-326, let-7, and miR-17/92 cluster elevate

gamma-globin expression, whereas miR-451 induces alpha-,

beta- and gamma-globin expression.45 Down regulation of

the circulating miRNAsmiR-let-7d, miR-200b and up-regulation

ofmiR-122 in TDT can serve as biomarkers for cellular damage

under excessive iron conditions in tissue.46 In a recent study,

Penglong et al.47 showed a biphasic expression of miR-214 in

beta- and alpha-thalassemia and the molecular mechanism

of miRNA and transcription factors in the regulation of oxida-

tive status in erythroid cells in thalassemia.

Role of artificial intelligence in thalassemia

The simulation of human intelligence using machines to gen-

erate, classify and perform cognitive functions through tech-

nology is called artificial intelligence (AI). The use of AI has

increased in the field of healthcare for accurate and swift

diagnosis of disease.48 Several machine learning algorithms

play a key role in diagnosing and differentiating thalassemia

from iron deficiency anemia.49 AI-based tools are required to

predict the prevalence of genetic mutations in thalassemia

much earlier, before expending more on diagnosis and treat-

ment.50 It is essential to have collaboration between engi-

neers and healthcare practitioners to decide on the

development of algorithms and models to solve problems

using specific knowledge and approaches to improve the

quality of life for patients.

Molecular diagnostics demand for thalassemia

Though different molecular approaches exist for the detec-

tion, screening and diagnosis of thalassemia their utilization

in routine clinical practice is limited by socioeconomic condi-

tions and by the awareness of the patients and their relatives.

At the same time, in-depth knowledge about the currently

available techniques, along with the advantages and limita-

tions of the same, is important to choose the correct testing

methodology applicable to concerned tertiary healthcare

facilities and the patients attending them. NGS is widely

available in the market, and because of the numerous publi-

cations, all departments are aware of its existence and usage.

Broader panels including multiple genes or shorter panels

with the targeted genes, which have clinical implications

prevalent in our population, can be studied using the same

technique. Quantitative polymerase chain reaction (qPCR) is

another more sensitive methodology when compared to NGS,

as the results obtained from NGS during a research protocol

are always validated using qPCR. qPCR is a cost-effective

methodology that can be used in diagnostics and hence can

be used with increased sensitivity for thalassemia mutation

testing, both in patients and also in instances of prenatal

screening. Testing of the HBB gene using the qPCR technique

is capable of detecting the most common mutations known

to occur in the Indian population. Using the NGS technique,

additional mutations (both prevalent and non-prevalent) in

the HBB gene can be covered with less sensitivity. This pitfall

of reduced sensitivity is associated with the errors and false-

positive data that can occur as part of data analysis. Expertise

is needed for pre-analytical, analytical and post-analytical

procedures, since error-free performance of the technique is

not widely available everywhere, especially in resource-poor

settings.

Conclusion

Although various molecular approaches exist to detect and

treat thalassemia, the burden of the disease is increasing

worldwide. It is necessary to create widespread awareness

and adopt diagnostic and prenatal screening programs to

provide appropriate supportive care and treatment for

affected patients and, at same time, to prevent the birth of

affected babies. The testing methodology adopted for this

should be cost-effective, sensitive, specific and easy to per-

form in resource-poor settings. Based on the extensive litera-

ture review available, it is suggested that qPCR may be

considered a viable option for thalassemia mutation testing

of the Indian population. NGS may be reserved for a clinically

suspected thalassemia patient who does not harbor a detect-

able mutation by qPCR. Moreover, qPCR is sufficient to detect

mutations in prenatal screening. In summary, this review

aimed to discuss multiple molecular-level approaches to

detect mutations in thalassemia and therapeutic knowledge

about the application of gene editing technologies in the

treatment of thalassemia. It also discusses the epigenetic

mechanisms and the role of non-coding RNA which may

serve as a biomarker for disease diagnosis. The need for

molecular testing diagnostics is warranted, and it should, at

the same time, be made affordable.
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