HEMATOL TRANSFUS CELL THER. 2025;xxx(xx):106226

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Review article

Cold-stored platelets: A systematic review of recovery in healthy adults and chest drain output in cardiothoracic surgery patients

Caleb Keane, Heba Sharif 🗅 , Denise Jackson 🕩 *

Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia

ARTICLE INFO

Article history: Received 10 May 2025 Accepted 21 September 2025 Available online xxx

Edited By: Eduardo Rego.

Keywords: Blood platelets Cold-stored platelets Platelet transfusion Room-temperature platelets Cardiothoracic surgery Chest drain output In vivo recovery Activated platelets Meta-analysis

ABSTRACT

Cold-stored platelets were abandoned in the 1960s after demonstration of an increased clearance in vivo due to an irreversible activated phenotype. Difficulties in storage, logistics, and the increased requirement of therapeutic platelet transfusions for haemostasis have sparked renewed interest in cold-stored platelets. This systematic review compared two primary outcomes: in vivo recovery for autologous cold-stored platelets versus roomtemperature platelets in healthy volunteers, and chest drain output at 24 h for allogeneic cold-stored platelets versus room-temperature platelets after complex cardiothoracic surgery. A total of 4215 articles were found in the ProQuest, PubMed, Scopus, Embase, and Cochrane electronic databases. Seven eligible papers were included in this meta-analysis. Cold-stored platelets showed a decreased in vivo recovery two hours after retransfusion following storage for two to seven days compared to a room-temperature platelet control group (mean difference: -25.85%; 95% confidence interval: -41.98 to -9.71%; pvalue = 0.002). Further, cold-stored platelets showed a decreased chest cavity output when transfused within 24 h after complex cardiothoracic surgery (mean difference: 249.68 mL; 95% confidence interval: 85.68 to 413.67 mL; p-value = 0.003). While cold-stored platelets are not a substitute for room-temperature platelets in a prophylactic scenario, their ability to significantly reduce chest cavity output suggests they may be optimal for the management of bleeding in surgical patients, especially in the context of logistical difficulties.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

A brief history of the platelet

Corresponding author at: Professor Thrombosis and Vascular Diseases Laboratory, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.

E-mail address: denise.jackson@rmit.edu.au (D. Jackson). https://doi.org/10.1016/j.htct.2025.106226

Platelet concentrates serve an important function in transfu- 3 sion medicine today, but as late as 1910, the role of platelets 4 in haemorrhages was only just being described [1]. Duke 5

2

2531-1379/© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

11

12

13

14

15

16

17

18

19

20

21

22

23

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

55 56

58

observed platelets modulating haemorrhage in transfusions, and went on to suggest some haemorrhagic diseases were likely caused by extremely low platelet counts. However, it was not until the 1950s that the transfusion of platelets was systemically approached [2]. Like other therapeutic products, platelets were stored cold, and they were often used for haematological disorders, so they required a long lifespan in vivo [3]. Transfusion of these platelets demonstrated a nearly 50 % decrease in haemorrhage-related leukaemia fatalities, which sparked much research interest [4]. During the 1950s, research began to demonstrate that overall survival of coldstored platelets (CSPs) was poorer than room-temperature platelets (RTPs), and the switch to plastic containers in the 1960s allowed better storage conditions for studies to demonstrate this phenomenon [2,5,6]. Given the desired outcome for most platelet transfusions was a sustained increment of patient platelet count, in the 1960s it was strongly suggested that the switch from CSPs to RPTs be made, and the entire industry quickly followed this recommendation [6].

Platelet function and the platelet storage lesion

Platelets are small cytoplasmic fragments from bone marrow megakaryocytes that play several roles in haemostasis, thrombosis, and immune modulation [7]. In circulation, they are in a quiescent, thin disc shape. As thermosensors, they are primed at peripheral sites with lower temperatures, a process that induces the release of intracellular granules and biochemicals for subsequent activation [5,7-9]. In particular, α -granules containing P-selectin (CD62P), Platelet Factor 4 (PF4), von Willebrand factor (vWF), and CD63 are released and either bind the surface of platelets to modulate their function or signal the immune system [10-13]. They also undergo conformational changes in surface receptors, such as the fibrinogen receptor GPIIb/IIIa involved in aggregation, and the vWF receptor GPIb/IX/V involved in adhesion [14,15]. Activated platelets will remodel their actin filaments to form filopodia, which increase the surface area and allow better aggregation, in conjunction with degranulation [16-18].

The platelet storage lesion (PSL) is defined as any deterioration in platelet quality or viability that occurs during preparation and ex vivo storage [19]. PSLs manifest distinct effects that are dependent on the stage of component preparation. These effects are triggered by a range of factors including temperature fluctuations (e.q., during whole blood transport), artificial surface contact, pathogen reduction technology, centrifugation forces, the storage media composition, and agitation (rocking) [19-22]. PSLs include cellular activation, which leads to degranulation and biochemical release; cellular fragmentation, which results in decreased platelet count and reduced in vivo survival; and loss of functional receptors, which diminishes overall in vivo function [19-20,23]. An additional problem of RTPs is bacterial contamination, which necessitates shorter storage times [20,21].

Cold-Stored platelet troubles

Evidence in the 1960s led scientists to recommend room-tem-59 perature storage over cold-storage, due to the unique charac-60 teristics of platelets when exposed to colder temperatures. Platelets are thermosensors, and thus undergo various 62 changes in metabolism, structure, and expression when they 63 reach particular temperature thresholds [8,9]. Below 20 °C, 64 platelets activate, which involves degranulation, increased 65 surface expression of GPIIb/IIIa and P-selectin, and serotonin 66 release [10,24,25]. Exposure to increased P-selectin levels, 67 along with its associated receptor GPIb/IX/V, is a major com- 68 ponent of the activated phenotype seen in CSPs [12]. Actin 69 rearrangement leads to a spherical shape with pseudopods 70 forming to increase surface area for aggregation [5,26,27]. The 71 vWF receptors, GPIb, IX and GPV, are irreversibly clustered, 72 with this condition being recognised by hepatic macrophage complement type 3 (CR3) receptors, leading to sequestration 74 and phagocytosis in vivo [8,28,29]. Further, β -GlcNAc moieties 75 on the cell surface are exposed through desialylation, leading 76 to recognition and phagocytosis in the liver [30,31]. It has also 77 been demonstrated that increased Ca²⁺ in storage, which may be an element of the storage medium, is correlated with 79 increased aggregation in vivo [32]. These factors play a role in 80 the observed increase in clearance and reduced survival of 81 CSPs in vivo; studies which aim to demonstrate efficient function need to address these in vivo survival times and recovery levels to demonstrate efficacy of the product.

84

85

105

112

113

114

115

Resurgence of cold storage interest

Despite many challenges, there has been an increase in both 86 research and clinical interest in CSPs within the past two decades, due to both the changes in prophylactic platelet indications and clinical trial data. CSPs have several advantages 89 compared to RTPs, and these may outweigh the drawbacks in 90 conditions such as active bleeding, remote laboratories, or 91 war zones [33,34]. CSPs demonstrate superior haemostatic 92 function in vitro and in vivo, and refrigeration can reduce 93 vasoactive substance release, leading to decreased febrile non-haemolytic transfusion reactions, and increased clearance, which can lower the risk of thrombosis [35–37]. Studies have demonstrated that CSPs maintain viability for up to 97 14 days in storage, which could markedly reduce wastage [38,39]. There is decreased metabolism and mitochondrial 99 dysfunction, with less reactive oxygen species (ROSs) causing cellular damage [40–42]. CSPs have even been shown to better reserve anti-platelet drug-related bleeding [43]. One of the 102 biggest advantages is the markedly decreased risk of bacterial 103 sepsis, with refrigeration halting much bacterial overgrowth 104

Use of CSPs would mitigate logistical challenges associated 106 with transport of platelets, especially to remote areas, and in war zones [33]. Use of a dual inventory would allow platelets to be prescribed based on clinical appropriateness, and despite this being recommended in the 1970s when RTPs 110 were universally instated, modern practices with prophylactic RTPs better support the use of a dual inventory [39,47]. A dual inventory study demonstrated the effectiveness of this design during the COVID-19 pandemic [39].

Research aims

With the resurgence of interest in CSPs, there is limited evidence on the in vivo recovery of CSPs in the context of 117

173

174

182

183

184

187

193

194

195

200

203

217

18	modern platelet preparation and in actively bleeding patients.
19	Cardiothoracic surgery is common in the Western world, and
20	platelet products better suited to these patients could lighten
21	the burden on transfusion services and post-surgical inter-
22	ventions [38]. This study aims to compare current data using
23	the PICO framework [48] by addressing the question: does
24	transfusion of CSPs (intervention) in healthy volunteers (pop-
25	ulation) show variation in vivo recovery (outcome) when
26	compared with RTPs (comparison)? A secondary question
27	aims to address: does transfusion of CSPs (intervention) in
28	cardiothoracic surgery patients (population) show a variation
29	in chest cavity output (outcome) when compared with trans-
30	fusion of RTPs (comparison)?

normal platelet count. They must have consented to autologous collection of apheresis platelets stored in plasma, subsequent product treatment, and then their return for in vivo

For the secondary research aim, studies analysing patients undergoing semi-urgent complex cardiothoracic surgery who had no history of congenital coagulopathies or haemostatic disorders, and who had not taken anti-platelet drugs within 48 h of the surgery, were considered. The patients must have received at least one unit of apheresis platelets stored in platelet additive solution (PAS) or PAS-C within 24 h after surgery without requiring reoperation. All patients must have consented during admission screening.

Methods

131

132 Search strategy

This systematic review and meta-analysis employed the Pre-133 134 ferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol for study screening and eligibility 135 assessment [49]. In addition, the Strengthening the Reporting 136 of Observational Studies in Epidemiology (STROBE) checklist 137 was applied to all full papers and conference abstracts to 138 assess the quality of included studies [50]. To identify appro-139 priate studies, searches were made of the PubMed, Cochrane, 140 Scopus, Embase, and ProQuest electronic databases from 141 inception date until July 2024. Searches used a combination of the following keywords: "cold-storage platelet", "cold-stored 143 platelet", "thrombocytopenia", "chilled platelet", "room-tem-144 perature platelet", "cardiac", "malignancy", "trauma", and 145 "cancer". The ProQuest search employed additional restric-146 tions: filtered by peer-reviewed, full-text only, and terms in 147 148 abstract. Manually searching scientific databases did not turn 149 up additional studies

Eligibility criteria

All articles were saved in Endnote automatically removing 151 duplicates. The title and abstract of papers were screened and 152 assessed for eligibility based on the research aim. The follow-153 ing criteria were assessed: 154

Types of studies 155

Observational studies, including both prospective and retro-156 spective studies, were eligible for inclusion. Papers published in any time frame were eligible, and all journal articles were 158 fully accessible and published in English. Papers must have 159 had a minimum of two participants per study arm (i.e. CSP in 160 vivo recovery, RTP in vivo recovery, CSP chest drain output, 161 RTP chest drain output), and they must have measured both 162 163 CSPs and RTPs for each cohort. Review articles and individual 164 case studies were not included, but conference abstracts were 165 acceptable.

Types of participants

For the primary research aim, studies analysing healthy indi-167 viduals were considered eligible. Subjects must have been over 18 years old, not on any anti-platelet drugs, and have a

Types of outcomes measured

For the primary research aim, the papers must have included in vivo recovery for both CSPs and RTPs, with recovery presented as percentage of subject's fresh autologous platelets two hours after reinfusion. Data must be presented as mean ± standard deviation (SD), or with standard error of mean (SEM) or 95 % confidence intervals (95 % CIs), from which SD was calculated. For the secondary research aim, the papers must have included the type of surgery, the chest drain output in mL 24 h post-surgery, and the corresponding data for both RTPs and CSPs. Studies were excluded if they did not measure both RTPs and CSPs.

Data extraction

The following relevant data were extracted from eligible studies: primary author, year of publication, study design, study period (if indicated), country of origin, number of participants, participant population, cold-storage time, platelet type, percent in vivo recovery of RTPs, percent in vivo recovery of CSPs, and chest drain output 24 h post-surgery in mL for patients that received RTPs and those that received CSPs.

Statistical analysis

Cochrane RevMan software was used to perform the metaanalyses [51]. A two-arm study of in vivo recovery of CSPs and RTPs was performed, as well as a two-arm study of chest 206 drain output at 24 h after CSP or RTP treatment in cardiothoracic surgery patients. Each analysis used the inverse variance method measuring mean difference and employed the continuous effects analysis model presented as Forest plots. The software calculated statistical significance as p-value and 211 95 % CIs, with p-value < 0.05 indicating statistical significance; 212 and heterogeneity of studies as I² with a corresponding pvalue. The software was also used to calculated SDs for any 214 studies that provided 95 % CIs or SEMs instead of SD. Risk of 215 bias for included papers was assessed using Funnel plots generated by the software.

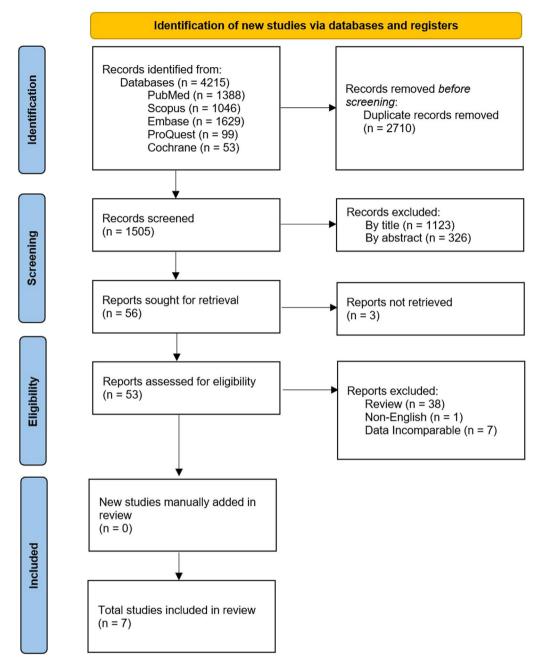


Figure. 1 – PRISMA flowchart for the identification and inclusion of relevant studies for the meta-analysis of in vivo recovery of transfused autologous platelets stored either at room temperature or refrigerated for two to seven days, and chest drain output 24 h after complex cardiothoracic surgery with transfusion of allogenic platelets stored either at room temperature or refrigerated [49].

Results

Study selection 219

220 The search strategy found 4215 articles published in electronic databases (PubMed, Scopus, Embase ProQuest, and

222 Cochrane). EndNote was employed to remove 2710 duplicates

before screening. Articles were screened first by title, remov-

ing a further 1123, as they were not relevant to the topic.

Next, abstracts were screened based on eligibility and 326 225 were excluded after failing to meet the study criteria. Fifty-six 226 full-length articles or conference abstracts were thoroughly 227 assessed for eligibility. Three were removed after not being 228 retrievable, 38 as they were review articles that did not pres- 229 ent data, one for not being published in English, and then 230 seven for having data that did not meet all the criteria for this 231 meta-analysis. Therefore, seven articles were identified as eli- 232 gible. A breakdown of the articles excluded in each stage of 233 screening can be found in Figure. 1. The reference lists of the 234

298

299

307

308

316

326

327

328

349

HEMATOL TRANSFUS CELL THER. 2025;xxx(xx):106226

Table 1 – Characte	ristics of eli	Table 1 – Characteristics of eligible studies investigating the in	gating th	ıe in vivo r	vivo recovery of transfused autologous platelets.	gous platelets.		
Study	Study Design Study Period	Study Period	Country Number of Patien	Number of Patients	Patient Population	Parameter Measured	Cold-Storage Time	Platelet Type
Apelseth et al. 2017 [52] Prospective	Prospective	Finished 2017	USA	35	Complex cardiothoracic surgery patients	RTP and CSP post-op chest drain	<7 days	Apheresis in PAS
Bailey et al. 2022 [53]	Prospective	Not indicated (but fund- USA ing published in 2021)	USA	9	Healthy volunteers	RTP and CSP platelet in vivo recovery	5 days	Apheresis in plasma, apheresis in PAS-C
Stolla et al. 2020 [54]	Prospective	2016 - 2018	USA	2	Healthy volunteers	RTP and CSP platelet in vivo recovery	5 days	Apheresis in plasma
Strandenes et al. 2016	Prospective	Finished 2016	USA	26	Major cardiothoracic surgery	RTP and CSP post-op chest drain	<7 days	Apheresis in PAS
[55]		, , , , , , , , , , , , , , , , , , ,		ç	patients	400	Ţ	,
Strandeneset al. 2020 [38]	Prospective	2015 — 2018	Norway	20	Elective and semi-urgent cardiac surgery patients	KTP and CSP post-op chest drain	days</td <td>Apheresis in PAS-C</td>	Apheresis in PAS-C
Vostal et al. 2018 [56]	Prospective	Not indicated	USA	16	Healthy volunteers	RTP and CSP platelet in vivo recovery	7 days	Apheresis in plasma
Wandall et al. 2008 [31] Prospective	Prospective	Not indicated	USA	4	Healthy volunteers	RTP and CSP platelet in vivo recovery	2 days	Apheresis

294

235 236

237 238

239 240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269 270 271

272

273

274

275

276

277

278

279

280

281

282

283

284

285 286

287

288

289

290

291

292

293

Platelets were stored either at room temperature or refrigerated for two to seven days and chest drain output was assessed 24 h after complex cardiothoracic surgery with transfusion of allogenic plate-RTP: Room-temperature platelets; GSP: Cold-stored platelets; PAS-C: platelet additive solution C (Intersol) stored either at room temperature or refrigerated selected papers, as well as excluded review papers, were examined but no additional articles were identified. All seven identified papers were included in this meta-analysis.

Study characteristics

The seven studies included in this review and meta-analysis measured the in vivo recovery of transfused autologous CSPs or RTPs two hours post-transfusion [31,53,54,56], or the chest drain output 24h post-surgery for complex cardiothoracic surgery patients who received CSPs or RTPs [38,52,55]. All seven studies were prospective and conducted in the USA or Norway (Table 1). Four of the studies comprised healthy volunteers [31,53,54,56]; the other three consisted of cardiothoracic surgery patients [38,52,55].

The length of time platelets were stored cold before transfusion varied between the studies: two studies transfused after five days [53,54], one study transfused after two days [31], one study transfused after seven days [56], and all three chest drain output studies transfused within seven days but without stating a specific time [38,52,55]. All seven studies used platelets collected by apheresis, with in vivo recovery studies storing platelets in plasma [31,53,54,56] and chest drain output studies storing platelets in PAS or PAS-C [38,52,55].

All four in vivo recovery studies gave recovery as a mean 317 percentage of the study arms \pm SD (Table 2). For the three chest drain output studies, one reported mean output \pm SD [55], one reported mean output \pm SEM [52], and the other reported mean output with 95 % CI [38]. The SDs for papers that did not include them were calculated by ReyMan software using the mean, SEM or 95 % CI, and population size. For 323 Apelseth et al. the SD for CSPs was calculated to be 252 mL and for RTPs it was 511 mL [52]. For Strandenes et al. the SD for CSPs was calculated to be 327 mL and for RTPs it was 546 mL [38].

Quality assessment of included studies

The quality, assessed for the seven studies using the STROBE 329 checklist, is shown in Tables 3A & 3B for full-length articles and conference abstracts, respectively. All criteria except two were met by every study. In full-length articles, only one paper clearly stated the eligibility criteria of the included patients, setting of the study, and collection methods [38]. Also, only two full-length articles described the participant characteristics and possible confounders in the result section [31,38]. Both conference abstracts met all quality criteria and were considered high quality. The paper by Bailey et al. was a letter to the editor providing further data on a previous study 339 and had no subsections, but the title was clear and the study design was indicated so it was considered eligible for the first criterion [53]. Stolla et al. reported potential biases in their results and not methods, so it was not considered ineligible for reporting of bias [54]. The paper by Wandall et al. did not 344 have sample sizes large enough for statistical analysis (two 345 participants per study arm), so it did not report statistical 346 methods [31]. However, the study met the inclusion criterion 347 of a minimum of two participants per study arm and thus it 348 was included.

Table 2 – Results of extra	acted data from	eligible studies	included in the m	neta-analyses.		
Study	Patients Receiving RTP	Patients Receiving CSP	RTP in vivo Recovery%	CSP in vivo Recovery%	RTP Drain	CSP Drain
Apelseth et al. 2017 [52]	22	17	-	-	820 mL (109)*	546 mL (61)*
Bailey et al. 2022 [53]	21	5	92 ± 12	46 ± 7	-	-
Stolla et al. 2020 [54]	5	5	70 ± 7	46 ± 3	-	-
Strandenes et al. 2016 [55]	12	14	-	-	$1055mL\pm677mL$	$775mL\pm534mL$
Strandenes et al. 2020 [38]	25	25	-	-	865 mL	649 mL
					(640–1091 mL) [†]	(514-784 mL) [†]
Vostal et al. 2018 [56]	12	4	$\textbf{55.7} \pm \textbf{13.9}$	23.1 ± 8.8	-	-
Wandall et al. 2008 [31]	2	2	47 ± 13	53 ± 5	-	-

RTP: Room-temperature platelets; CSP: Cold-stored platelets; SEM: standard error of the mean; 95 % CI: 95 % confidence interval. Results are given as mean ± SD unless otherwise indicated. The SEM and 95 % CI results are represented as they were found in the studies; however, calculated SDs for these papers are presented in the results section and in the meta-analyses.

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

368

369

371

372

374

375

376

377

378

380

381

383

384

In vivo recovery meta-analysis

A meta-analysis was performed and a Forest plot generated for the in vivo recovery of autologous CSPs and RTPs in healthy volunteers two hours after retransfusion (Figure. 2A). Across the four studies which reported in vivo recovery, three favoured RTPs for increased in vivo recovery whereas one favoured CSPs [31]. The mean difference between CSPs as a study group and RTPs as a control group was -25.85% (95% CI: -41.98 to -9.71 %), showing overall favour for RTPs. This finding was deemed statistically significant with a p-value of 0.002. The data between the studies demonstrated high heterogeneity ($I^2 = 91\%$; p-value <0.00001). Risk of bias was assessed using a Funnel plot (Figure. 3A). Only four studies were included, so estimation of intervention effect is hard to determine from plot symmetry. The paper by Wandall et al. demonstrated the highest SEM and the greatest variation in mean difference between studies [31].

Chest drain output meta-analysis

A meta-analysis was performed and a Forest plot generated for the chest drain output 24 h post-surgery after treatment with CSPs or RTPs (Figure. 2B). Across the three studies which reported chest drain output, all favoured CSPs for decreased output. The mean difference between CSPs as a study group and RTPs as a control group was 249.68 mL (95 % CI: 85.68 to 413.67 mL), overall, in favour of CSPs. This finding was deemed statistically significant with a p-value of 0.003. The data between studies demonstrated no heterogeneity $(I^2 = 0 \%; p\text{-value} = 0.94)$, which likely indicates the studies are homogenous, and any differences in values are probably due to random sampling errors. Risk of bias was assessed using a Funnel plot (Figure. 3B). Only three studies were included, so estimation of intervention effect is hard to determine from plot symmetry. The paper by Strandenes et al. cannot be seen on the graph as the software was unable to place it in any viewable area, a fact that could not be mitigated with RevMan software [55].

Discussion 386

387

393

397

404

418

Reduced recovery of cold-stored platelet transfusion in vivo

This systematic review with meta-analysis shows that current studies are still in agreement with the long-understood 389 decrease in vivo recovery of autologous platelets when stored 390 cold before retransfusion. The overall recovery for CSPs was statistically significantly lower than RTPs, with a mean difference of -25.85% (95% CI: -41.98 to -9.71%; p-value = 0.002). There was high heterogeneity of the data ($I^2 = 91\%$; p-value 394 <0.00001), which indicates that 91% of the variation in results cannot be attributed to chance alone but is the result of other 396 factors such as bias [57]. This heterogeneity may be high due to the small number of included studies, the small number of participants in each study arm, and reported patient-topatient variations in many of the included studies. Since 400 2003, the Food and Drug Administration of the United States 401 (FDA) have required platelet in vivo recovery to be ≥66 % [58], 402 and CSPs did not meet this criterion in any study ($53 \pm 5\%$ 403 [31], $46 \pm 7 \%$ [53], $46 \pm 3 \%$ [54], and $23 \pm 9 \%$ [56]).

Though beyond the scope of this review, all included 405 papers also tested in vitro parameters to measure the activated phenotype observed in cold storage. This consists of 407 assessing surface receptors such as CD62P (P-selectin) and 408 phospholipid phosphatidylserine (PS), which are stored intracellularly and released during activation or in response to 410 temperature drops; along with metabolic markers such as 411 glucose and lactate, which are consumed to supply the energy 412 needed for shape changes but are often considerably 413 decreased at room temperature [11,12,31,38,40,53,54]. While 414 there are increased activation marker levels in CSPs, including P-selectin and annexin V binding (an indirect test of PS 416 expression), metabolic markers and pH are decreased, which 417 may allow for better storage times and product quality.

One of the included studies showed slightly increased 419 recovery for CSPs, likely due to the very short cold storage 420 time (48 h) compared to the five- or seven-days others were 421 stored [31]. While only demonstrated in one study, a shorter 422 cold storage time displaying greater in vivo recovery may be a 423

Mean (SEM)

[†] Mean (95 % CI).

	Title and Abstract	Introduction		Met	Results	Discussion		
	Clear title and abstract with study design indicated	Explain the scientific background and rationale	Study methods presented clearly	Eligibility criteria, setting, dates, and data collection described	Statistical methods described	Describes and addresses potential bias	Describes characteristics of study participants and potential confounders	Summarise key results and discusses limitations
Bailey et al. 2022 [53]	Y ^a	Y	Y	N	Y	Y	N	Y
Stolla et al. 2020 [54]	Y	Y	Y	N	Y	Y ^b	N	Y
Strandenes et al. 2020 [38]	Y	Y	Y	Y	Y	Y	Y	Y
Vostal et al. 2018 [56]	Y	Y	Y	N	Y	N	N	Y
Wandall et al. 2008 [31]	Y	Y	Y	N	N ^c	Y	Y	Y

Y: Criteria fulfilled; N: Criteria not fulfilled.

Table 3B - Eval	uation of the methodolog	y of included confe	rence abstracts.					
	Clear title with study design indicated	Study methods presented clearly	Eligibility criteria and setting briefly mentioned	Primary outcome of report clearly defined	Statistical methods described	Number of participants in study reported	Measures of variability or uncertainty reported	General
	interpretation of study given							
Apelseth et al. 2017 [52]	Y	Y	Y	Y	Y	Y	Y	Y
Strandenes et al. 2016 [55]	Y	Y	Y	Y	Y	Y	Y	Y

According to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist for full-length articles [50].

^a Small study in letter to the editor format, no subsections like abstract.

b Addressed, but in the results section, not in the methods.

^c Sample size sufficient for proof of hypothesis but not large enough for statistical analysis.

Y: Criteria fulfilled; N: Criteria not fulfilled.

486

487

488

489 490

491

492

493

495

496

497

498

499

500

501

502

504

505

507 508

509

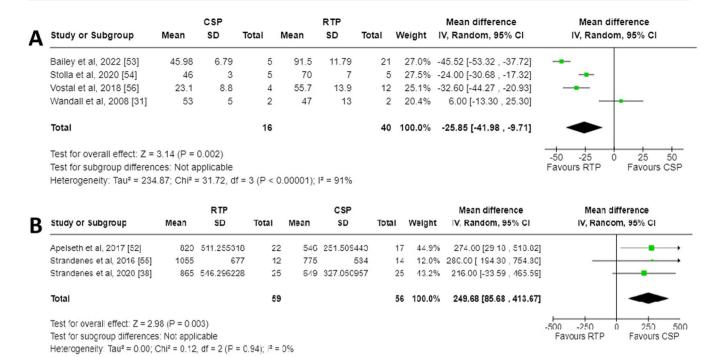


Figure. 2 - Forest plots for meta-analyses generated using RevMan [51]. A) Forest plot for in vivo recovery of transfused autologous platelets stored either at room temperature or refrigerated for two to seven days. B) Forest plot for chest drain output 24 h post complex cardiothoracic surgery with transfusion of allogenic platelets stored either at room temperature or refrigerated.

further avenue of research. Irreversible cold storage lesions usually occur after 18 h of storage at cold temperatures and so they can be ameliorated by warming within this period [6,59]. Combining cold storage with room temperature storage in a temperature cycling pattern therefore may yield better recovery and metabolic results. Vostal et al. studied the effects of temperature cycling, but only the data on CSPs was used for this meta-analysis [56]. They also reported that the study arms with CSPs and RTPs were not performed on the same participants, were performed at different times due to funding issues, used two different manufacturers for the collection of apheresis platelets, and thus demonstrated up to 10% variation in results between study arms, which undoubtedly contributed to the heterogeneity seen in this meta-analysis.

Two of the studies found unexpected results when adapting their models from previous animal studies, which showed better outcomes than were reported in humans [31,56]. Differences in both metabolic markers and in vivo parameters demonstrated that structures and functions exist in human platelets which contributed to clearance of platelets; they were not seen in animal studies. This suggests that animal platelets are not a good substitute for human platelet testing, a major reason animal studies were excluded from the scope of this analysis.

Reduced chest cavity output in cold-stored platelet transfusion

This systematic review with meta-analysis shows that transfusion of CSPs results in a lower chest cavity output within 24 h 511 after complex cardiothoracic surgery compared with RTPs. The chest drain output in CSP transfusion was statistically significantly lower, with an overall mean difference of 583 249.68 mL (95 % CI: 85.68 to 413.67 mL; p-value = 0.003). There 515 was no heterogeneity in the data ($I^2 = 0\%$; p-value = 0.94), indicating that all the variation in the results is due to chance and 517 not bias [57]. Despite overall findings showing significance 518 when transfusing CSPs, each individual study did not report 519 significance between participant groups. Both individual studies reporting no significant difference between groups and this meta-analysis reporting significant decrease in chest cavity output for CSPs indicate that CSPs are a suitable substitute for 523 RTPs in the setting of acute bleeding in complex cardiothoracic 524 surgeries. This is the logical conclusion for the transfusion of a 525 haemostatically superior product in the context of haemosta-

522

526

527

541

All platelet products employed PAS or PAS-C as the storage 528 media, which has a reported lower incidence of transfusion 529 reactions, and is routinely used for RTP storage. PAS-C has 530 been demonstrated to show better in vivo recovery and survival, potentially influencing the decreased output compared to platelets in plasma used for the in vivo recovery meta-analysis [60]. All three included studies were conducted by mostly 534 the same research team, which may have been part of the 535 reason that no heterogeneity was seen in the data. There are 536 ongoing trials in Australia and the USA using CSPs in surgical and bleeding patients, but data had not been published at the time of this study. The data from these clinical trials will be very useful in further demonstrating the effects of CSPs in 540 halting bleeding.

A major problem with the design of these studies is the 542 non-specific nature of chest drain output as a marker of haemostasis in surgery patients. In 2020, Strandenes et al. 544 reported five different types of cardiac surgery with 545

579

580

584

585

586

587

589

590

593

594

595

596

597

614

615

616

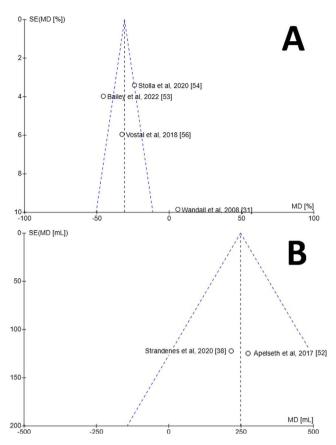


Figure. 3 – Funnel plots for estimation of bias generated using RevMan [51]. Programme did not generate 95 % confidence interval lines, likely due to small number of samples. A) Funnel plot for in vivo characteristics of transfused autologous platelets stored either at room temperature or refrigerated for two to seven days. B) Funnel plot for chest drain output 24 h after complex cardiothoracic surgery with transfusion of allogenic platelets stored either at room temperature or refrigerated. Programme did not display paper by Strandenes et al. [55].

approximately the same number in each study arm [38]. Factors such as history of sternotomies, length of surgical procedure, patient age, logistic EuroSCORE, and patient blood volume all impact the required number of platelets required for restoration of haemostasis, as well as expected blood loss. These factors are very difficult to control for, and chest cavity output may not represent effectivity of platelets. Additionally, platelets were rarely given in isolation, but along with other transfusion products, and these products undoubtedly impacted blood loss. While this review points to a significant lowering of chest drain output, the most important finding is that CSPs currently demonstrate acceptable testing parameters for use during complex cardiothoracic surgery. Given the logistical difficulties of RTP storage and transport, they may be a viable option for some hospitals and centres.

Limitations of review

548

549

550

551

552

554

555

556

557

558

559

560

562

The major limitation of this review was the small number of papers included, and the small number in each study arms in the papers. Only 56 healthy patients were tested across four studies for in vivo recovery, split between CSPs (n = 16) and RTPs (n = 40), and only 115 cardiothoracic surgery patients were tested across three studies for chest cavity output, split between CSPs (n = 56) and RTPs (n = 59). High heterogeneity for in vivo recovery was likely due to the size of these studies. Failure to test for both CSPs and RTPs, or differences in testing parameters, accounted for the exclusion of otherwise acceptable studies. Another important marker of in vivo platelet function is survival, which could not be tested as insufficient papers reported comparable results, with some reporting survival in days and others as a percentage of fresh count. Three of the in vivo recovery papers reported CSPs as a control for modified platelets stored cold, and therefore did not address problems with cold storage but with the modification of the platelets [31,53,56].

Further research

CSPs in plasma have shown in vivo recovery levels lower than FDA requirements, but this meta-analysis did not report on the addition of other storage media or modifications to platelets, which may increase circulation time [58]. Research has demonstrated the various mechanisms by which CSPs are cleared rapidly from circulation, and continued research into stopping irreversible cold storage changes, such as galactosylation of clustered GPIb/IX receptors, is one avenue just starting to be reported in human trials; further research comparing these methods to a control group may lead to better preparation methods to promote cold storage [31]. Modification of platelets will be dependent on patient treatment. Increased recovery and survival are a requirement of prophylactic platelet treatment, but may also increase the effects of therapeutic platelets by virtue of increased time in circulation to participate in haemostasis. However, therapeutic platelets benefit from priming as they are effective immediately upon transfusion.

Research into storage conditions, such as temperature cycling (which may mitigate irreversible changes to platelet structure), is required to better understand the effects on storage time, in vivo recovery and survival, and product viability. Results from this research could elucidate new ways of storing platelets, allowing dual inventories or switching to an entirely new storage method. Two clinical trials are looking at how extended storage of CSPs for cardiac surgery may impact bleeding [61,62]. Purpose-built refrigerators can automate the storage process, reducing waste and increasing product effectiveness. Another clinical trial is determining efficacy of autologous CSPs that are reinfused after platelet count is normalised, in a similar fashion to acute normovolaemic haemodilution methods [63]. CSPs are only just being reintroduced for the treatment of bleeding, but their potential is still being understood even today, and future research needs to address the different ways platelets can be stored and modified to allow longer shelf life, better therapeutic function and life, and reduced risk to the patient.

Conclusion

This systematic review and meta-analyses demonstrates that 617 CSPs will have a statistically significantly reduced in vivo 618

recovery when stored cold for two to seven days and tested two hours after retransfusion. This is due to an activated phenotype which occurs when they are stored below 20 °C for 621 over 18 h, and recognised by hepatic macrophages which 622 quickly clear platelets from circulation. Therefore, CSPs are not an effective prophylactic replacement for RTPs. Because 624 of this activated phenotype, CSPs demonstrated a statistically 625 significantly lower chest drain output when transfused within 24 h after complex cardiothoracic surgery. Ongoing clinical 627 trials will hopefully provide further data to demonstrate 628 increased haemostatic effectiveness of CSPs for therapeutic transfusion.

Funding

- This research did not receive any specific grant from funding 632 agencies in the public, commercial, or not-for-profit sectors
- **Conflicts of interest**
- Authors declare no conflict of interest.
- REFERENCES

645

646

647

648

649

650

651

652

653

654

655

656

657

658

662

663

664

665

666

667

668

669

670

- 1. Duke WW. The relation of blood platelets to hemorrhagic dis-637 ease: description of a method for determining the bleeding time 638 639 and coagulation time and report of three cases of hemorrhagic disease relieved by transfusion. J Am Med Assoc. 1910;55 640 641 (14):1185-92. https://doi.org/10.1001/jama.1910.04330140029009.
- 642 2. Slichter SJ. Controversies in platelet transfusion therapy. 643 Annu Rev Med. 1980;31:509-40. https://doi.org/10.1146/ annurev.me.31.020180.002453. 644
 - 3. Zhao H, Devine DV. The missing pieces to the cold-stored platelet puzzle. Int J Mol Sci. 2022;23(3):1100. https://doi.org/ 10.3390/ijms23031100.
 - 4. Hersh EM, Bodey GP, Nies BA, Freireich EA. Causes of death in acute leukemia: a ten-year study of 414 patients from 1954 to 1963. J Am Med Assoc. 1965;193:105-9. https://doi.org/10.1001/ jama.1965.03090020019005.
 - 5. Zucker MB, Borrelli J. Reversible alterations in platelet morphology produced by anticoagulants and by cold. Blood. 1954;9(6):602-8. https://doi.org/10.1182/blood.V9.6.602.602.
 - 6. Murphy S, Gardner FH. Platelet preservation Effect of storage temperature on maintenance of Platelet viability — Deleterious effect of refrigerated storage. N Engl J Med. 1969;280(20):1094-8. https://doi.org/10.1056/NEJM196905152802004.
- 7. Linden MD. Platelet physiology. In: Monagle P, ed. Haemosta-659 660 sis: methods and protocols, NJ (USA): Humana Totowa; 2013:13-30. https://doi.org/10.1007/978-1-62703-339-8. 661
 - 8. Hoffmeister KM, Felbinger TW, Falet H, Denis CV, Bergmeier W, Mayadas TN, et al. The clearance mechanism of chilled blood platelets. Cell. 2003;112(1):87-97. https://doi.org/10.1016/ s0092-8674(02)01253-9.
 - 9. Straub A, Krajewski S, Hohmann JD, Westein E, Jia F, Bassler N, et al. Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. ATVB. 2011;31(7):1607-16. https:// doi.org/10.1161/ATVBAHA.111.226373.

10. Andrews RK, Berndt MC. Platelet physiology: in cold blood. 671 Curr Biol. 2003;13(7):R282-4. https://doi.org/10.1016/S0960-9822(03)00202-1.

672

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

704

705

706

707

708

709

712

715

716

717

718

719

720

721

723

724

725

726

727

728

729

731

732

733

734

735

- 11. Hegazy S, Elsabaawy M, Eltabakh M, Hammad R, Bedair H. 674 CD62P (P-selectin) expression as a platelet activation marker 675 in patients with liver cirrhosis with and without cholestasis. 676 Clin Exp Hepatol. 2021;7(2):231-40. https://doi.org/10.5114/ ceh.2021.107566.
- 12. Romo GM, Dong JF, Schade AJ, Gardiner EE, KS GS, Li CQ, et al. The glycoprotein ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med. 1999;190(6):803-14. https://doi.org/ 10.1084/jem.190.6.803.
- 13. Nishibori M, Cham B, McNicol A, Shalev A, Jain N, Gerrard JM. The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest. 1993;91(4):1775-82. https://doi.org/10.1172/JCI116388.
- 14. Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem. 1985;260(20):11107-14. https://doi. org/10.1016/S0021-9258(17)39154-8.
- 15. Li R, Emsley J. The organizing principle of the platelet glycoprotein ib-IX-V complex. J Thromb Haemost. 2013;11(4):605-14. https://doi.org/10.1111/jth.12144.
- 16. Winokur R, Hartwig JH. Mechanism of shape change in chilled human platelets. Blood. 1995;85(7):1796-804. https://doi.org/ 10.1182/blood.V85.7.1796.bloodjournal8571796.
- 17. Rijkers M, van Alphen FP, van der Meer PF, de Korte D, Leebeek FWG, Meijer AB, et al. Label free quantitative mass spectrometry identifies processes linked to platelet degranulation As early events during platelet storage. Blood. 2016;128(22):2638. https:// doi.org/10.1182/blood.V128.22.2638.2638.
- 18. Sandgren P, Shanwell A, Gulliksson H. Storage of buffy coat 703 -derived platelets in additive solutions: in vitro effects of storage at 4 °C. Transfus (Paris). 2006;46(5):828-34. https://doi.org/ 10.1111/j.1537-2995.2006.00803.x.
- 19. Ng MSY, Tung JP, Fraser JF. Platelet storage lesions: what more do we know now? Transfus Med Rev. 2018;32(3):144-54. https://doi.org/10.1016/j.tmrv.2018.04.001.
- 20. Osman A, Hitzler WE, Provost P. The platelets' perspective to 710 pathogen reduction technologies. Platelets. 2017;29(2):140-7. 711 https://doi.org/10.1080/09537104.2017.1293806.
- 21. Tynngård N, Studer M, Lindahl TL, Trinks M, Berlin G. The effect 713 of gamma irradiation on the quality of apheresis platelets dur- 714 ing storage for 7 days. Transfus (Paris). 2008;48(8):1669-75. https://doi.org/10.1111/j.1537-2995.2008.01746.x.
- 22. Osman A, Hitzler WE, Ameur A, Provost P. Differential expression analysis by RNA-seq reveals perturbations in the platelet mRNA transcriptome triggered by pathogen reduction systems. PLoS One. 2015;10(7):e0133070. https://doi.org/10.1371/ journal.pone.0133070.
- 23. Hartwig JH. Mechanisms of actin rearrangements mediating 722 platelet activation. J Cell Biol. 1992;118(6):1421-42. https://doi. org/10.1083/jcb.118.6.1421.
- 24. Maurer-Spurej E, Pfeiler G, Maurer N, Lindner H, Glatter O, Devine DV. Room temperature activates Human blood platelets. Lab Invest. 2001;81(4):581-92. https://doi.org/10.1038/ labinvest.3780267.
- 25. Faraday N, Rosenfeld BA. In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anaes. 730 1998;88(6):1579–85. https://doi.org/10.1097/00000542-1998060 00-00022.
- 26. White JG, Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood. 1967;30(5):625-35. https://doi.org/10.1182/blood.V30.5.625.625.
- 27. Sharp AA. Viscous metamorphosis of blood platelets: a study 736 of the relationship to coagulation factors and fibrin formation. 737

809

810

811

Q22

813

814

815

816

817

818

819

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

844

847

848

849

850

851

852

853

855

856

857

858

859

860

861

862

864

865

866

867

868

869

870

872

- 738 Brit J Haemat. 1958;4(1):28–37. https://doi.org/10.1111/j.1365-739 2141.1958.tb03831.x.
- 740 28. Badlou BA, Spierenburg G, Ulrichts H, Deckmyn H, Smid WM,
 741 Akkerman JWN. Role of glycoprotein ibα in phagocytosis of
 742 platelets by macrophages. Transfus (Paris). 2006;46(12):2090–9.
 743 https://doi.org/10.1111/j.1537-2995.2006.01034.x.
- 744 29. Simon DI, Chen Z, Xu H, Li CQ, Dong JF, McIntire LV, et al.
 745 Platelet glycoprotein ibα is a counterreceptor for the leukocyte
 746 integrin Mac-1 (Cd11b/Cd18). J Exp Med. 2000;192(2):193–204.
 747 https://doi.org/10.1084/jem.192.2.193.
- 748 30. Josefsson EC, Gebhard HH, Stossel TP, Hartwig JH, Hoffmeister KM. The macrophage $\alpha M\beta 2$ integrin αm lectin domain mediates the phagocytosis of chilled platelets. J Signal Transduct. 2005;280(18):18025–32. https://doi.org/10.1074/jbc.M501178200.
- 752 31. Wandall HH, Hoffmeister KM, Sørensen AL, Rumjantseva V,
 753 Clausen H, Hartwig JH, et al. Galactosylation does not prevent
 754 the rapid clearance of long-term, 4 °C-stored platelets. Blood.
 755 2008;111(6):3249–56. https://doi.org/10.1182/blood-2007-06 756 097295.
- 757 32. Mindukshev I, Fock E, Dobrylko I, Sudnitsyna J, Gambaryan S,
 758 Panteleev MA. Platelet hemostasis reactions at different temperatures correlate with intracellular calcium concentration.
 760 Int J Mol Sci. 2022;23(18):10667. https://doi.org/10.3390/ijm-s231810667.
- 762 33. Pidcoke HF, Spinella PC, Ramasubramanian AK, Strandenes G,
 763 Hervig T, Ness PM, et al. Refrigerated Platelets for the treatment of acute bleeding: a review of the literature and reexamination of current standards. Shock. 2014;41:51–3. https://doi.org/10.1097/SHK.0000000000000078.
- 767 34. Fisher A, Stallings JD, Schauer SG, Graham BA, Stern CA,
 768 Cap A, et al. A safety and feasibility analysis on the use of
 769 cold-stored platelets in combat trauma. J Trauma Acute
 770 Care Surg. 2024;97(2S):S91-7. https://doi.org/10.1097/
 771 TA.0000000000004334.
- 772 35. Becker GA, Tuccelli M, Kunicki T, Chalos MK, Aster RH. Studies
 773 of platelet concentrates stored at 22 C and 4 C. Transfus
 774 (Paris). 1973;13(2):61–8. https://doi.org/10.1111/j.1537 775 2995.1973.tb05442.x.
- 36. Scorer TG, Reddoch-Cardenas KM, Thomas KA, Cap AP, Spine lla PC. Therapeutic utility of cold-stored platelets or cold stored whole blood for the bleeding hematology-oncology
 patient. Hematol Oncol Clin North Am. 2019;33(5):873–85.
 https://doi.org/10.1016/j.hoc.2019.05.012.
- 781 37. Ferrer F, Rivera J, Lozano ML, Corral J, García VV. Effect of cold 782 storage in the accumulation of bioreactive substances in plate 783 let concentrates treated with second messenger effects. Hae 784 matologica. 2001;86(5):530–6.
- 38. Strandenes G, Sivertsen J, Bjerkvig CK, Fosse TK, Cap AP, Del
 Junco DJ, et al. A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery. Anesthesiology. 2020;133(6):1173–83. https://doi.org/10.1097/ALN.0
 00000000000003550.
- 39. Braathen H, Hagen KG, Kristoffersen EK, Strandenes G, Apelseth TO. Implementation of a dual platelet inventory in a tertiary hospital during the COVID 19 pandemic enabling coldstored apheresis platelets for treatment of actively bleeding patients. Transfus (Paris). 2022;62(Suppl 1):S193–202. https://doi.org/10.1111/trf.16988.
- 796 40. Zhao HQW, Serrano K, Stefanoni D, D'Allesandro A, Devine
 797 DV. In vitro characterization and metabolomic analysis of
 798 cold-stored platelets. J Proteome Res. 2021;20(5):2251–65.
 799 https://doi.org/10.1021/acs.jproteome.0c00792.
- 800 41. Bynum JA, Meledeo MA, Getz TM, Rodriguez AC, Aden JK, Cap
 801 AP, et al. Bioenergetic profiling of platelet mitochondria during
 802 storage: 4 °C storage extends platelet mitochondrial function
 803 and viability. Transfus (Paris). 2016;56(S1):S76–84. https://doi.
 804 org/10.1111/trf.13337.

- Davizon-Castillo P, McMahon B, Aguila S, Bark D, Ashworth K, Allawzi A, et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood. 2019;134(9):727–40. https://doi.org/10.1182/blood.2019000200.
- 43. Stolla M., Vargas A., Bailey S., Fang L., Pellham E., Gettinger I., et al. Cold-stored platelets to reverse dual antiplatelet therapy. 2018 Nov 29;132(S1):S525. doi: 10.1182/blood-2018-99-119548
- Morrow JF, Braine HG, Kickler TS, Ness PM, Dick JD, Fuller AK. Septic reactions to platelet transfusions: a persistent problem. JAMA. 1991;266(4):555–8. https://doi.org/10.1001/jama.1991. 03470040119033.
- 45. Sazama K. Bacteria in blood for transfusion. A review. Arch Pathol Lab Med. 1994;118(4):350–65.
- 46. Jacobs MR, Palavecino E, Yomtovian R. Don't bug me: the problem of bacterial contamination of blood components—Challenges and solutions. Transfus (Paris). 2002;41(11):1331–4. https://doi.org/10.1046/j.1537-2995.2001.41111331.x.
- 47. Valeri CR. Hemostatic effectiveness of liquid-preserved and previously frozen Human platelets. N Engl J Med. 1974;290(7):353–8. https://doi.org/10.1056/NEJM197402142900702.
- 48. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inf Decis Mak. 2007;7:16. https://doi.org/10.1186/1472-6947-7-16.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71.
- von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–8. https://doi.org/10.1136/bmj.39335.541782.AD.
- 51. Review Manager (RevMan). Computer programme]. Version 8.7.0. Cochrane Collab. 2024. Oct 03. Available at: revman. cochrane.org.
- 52. Apelseth TÖ, Kristoffersen EK, Kvalheim VL, Bjerkvig CK, Fosse TK, Hervig TA, et al. Transfusion with cold stored platelets in patients undergoing complex cardiothoracic surgery with cardiopulmonary bypass circulation: effect on bleeding and thromboembolic risk. Transfus (Paris). 2017;57(S3). https://doi.org/10.1111/trf.14286.
- 53. Bailey SL, Fang LY, Fitzpatrick L, Byrne D, Pellham E, Stolla M. In vitro and in vivo effects of short-term cold storage of platelets in PAS-C. Haematol. 2022;107(4):988–90. https://doi.org/10.3324/haematol.2021.279865.
- 54. Stolla M, Bailey SL, Fang L, Fitzpatrick L, Gettinger I, Pellham E, et al. Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C-stored platelets. Transfus (Paris). 2020;60(3):613–21. https://doi.org/10.1111/trf.15669.
- 55. Strandenes G, Kristoffersen EK, Bjerkvig CK, Fosse TK, Hervig T, Haaverstad A, et al. Cold-stored apheresis platelets in treatment of postoperative bleeding in cardiothoracic surgery. Transfus (Paris). 2016;56(S4):16A. https://doi.org/10.1111/trf.13807.
- 56. Vostal JG, Gelderman MP, Skripchenko A, Xu F, Li Y, Rya J, et al. Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers. Transfus (Paris). 2017;58(1):25–33. https://doi.org/10.1111/trf.14392.
- 57. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.
- 58. FDA Blood Products Advisory Committee 2003 March 13-14; Available at: http://www.fda.gov/ohrms/dockets/ac/03/transcripts/3940t1.htm and http://www.fda.gov/ohrms/dockets/ac/03/transcripts/3940t2.htm

- 873 59. McGill M. Temperature cycling preserves platelet shape and 874 enhances in vitro test scores during storage at 4 degrees. J Lab 875 Clin Med. 1978;92(6):971-82. PMID: 739175.
- 60. Slichter SJ, Corson J, Jones MK, Christoffel T, Pellham E, 876 Bailey SL, et al. Exploratory studies of extended storage of 877 878 apheresis platelets in a platelet additive solution (PAS). Blood. 2014;123(2):271-80. https://doi.org/10.1182/blood-879 880 2013-05-501247.
- 61. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library 881 882 of Medicine (US). 2000 Feb 29 - . Identifier NCT05220787, Extended cold stored apheresis platelets in cardiac surgery patients 883
- (CHASE). 2023 Jul 27 [cited 2025 Aug 9]. Available from https:// clinicaltrials.gov/study/NCT05220787

885

893

894

- 62. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of 886 Medicine (US). 2000 Feb 29 - . Identifier NCT06147531, Delayed 887 cold-stored platelets -PLTS-1 (PLTS-1). 2024 Sep 27 [cited 2025 Aug 888 9]. Available from: https://clinicaltrials.gov/study/NCT06147531
- 63. ClinicalTrials.gov [Internet]. Bethesda (MD): National Library 890 of Medicine (US). 2000 Feb 29 - . Identifier NCT07064954, Autologous Cold-stored Apher. Platelets (Auto-PLTS). 2025 Jul 22 [cited 892 2025 Aug 9]. Available from: https://clinicaltrials.gov/study/ NCT07064954