ARTICLE IN PRESS

HEMATOL TRANSFUS CELL THER. 2025;xxx(xx):106225

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Obstetrical use of intravenous immunoglobulin: A singlecentre retrospective study

Q1 Roy Khalife (1) a,b,c,*, Bonnie Niu c, Iris Perelman b, Darine El-Chaâr (1) b,d, Dean Fergusson a,b,c, Alan Karovitch a,c,d, Johnathan Mack a,b,c, Melanie Tokessy e, Kathryn E. Webert (1) f,g, Alan Tinmouth a,b,c,g

ARTICLE INFO

Article history: Received 23 March 2025 Accepted 4 September 2025 Available online xxx

Keywords:
Immunoglobulin
Pregnancy
Thrombocytopenia
ITP
Transfusion medicine

ABSTRACT

Introduction: Intravenous immunoglobulin is widely used for various conditions but faces challenges such as limited supply, high cost, and substantial off-label use. Obstetrical intravenous immunoglobulin use remains underexplored, despite its relevance to maternal and neonatal care and resource management.

Methods: This single-center retrospective cohort study examined intravenous immunoglobulin administration in 136 pregnancies (122 patients) from 2007–2020, focusing on adherence to Health Canada licensed indications and Ontario Immunoglobulin Utilization Management Guidelines.

Results: Maternal thrombocytopenia (56.6%) and treatment for fetal/neonatal alloimmune thrombocytopenia (16.2%) were the most common indications, accounting for 16.9% and 64.3% of total intravenous immunoglobulin volume, respectively. Intravenous immunoglobulin use represented 1.6% of the center's total consumption during the study period, with notable non-adherence to guidelines in 38.2% (Health Canada) and 17.6% (provincial guidelines) of pregnancies.

Conclusion: Findings highlight the need for optimized intravenous immunoglobulin use in obstetrics and future research to ensure safety, efficacy, and evidence-based guidance in clinical practice and policy.

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

E-mail address: rkhalife@toh.ca (R. Khalife). https://doi.org/10.1016/j.htct.2025.106225

2531-1379/© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

en access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: R. Khalife et al., Obstetrical use of intravenous immunoglobulin: A single-centre retrospective study, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106225

^a Department of Medicine, University of Ottawa, Ottawa, ON, Canada

^b Ottawa Hospital Research Institute, Ottawa, ON, Canada

^c Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada

d Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, Canada

e Eastern Ontario Regional Laboratory Association, Ottawa Hospital, Ottawa, Ontario, Canada

^fDepartment of Medicine and the Department of Molecular Medicine and Pathology, McMaster University, Hamilton, Ontario, Canada

g Canadian Blood Services, Ontario, Canada

^{*} Corresponding author at: 501 Smyth Road, Box 201A, Ottawa, Ontario, Canada K1H 8L6.

10

11

12

13

14

15

16

17

19

20 21

22

23

24

25 26

27

28

29

31

33

35

36

37

38

39

40

41

42

43

44

45

47

48

50

51

53

54

Introduction

Intravenous immunoglobulin (IVIG), derived from pooled human plasma, is used to treat immunodeficiencies, autoimmune diseases, and potentially other conditions [1]. However, IVIG is in limited supply, has a high cost, and considerable off-label use, which is often not supported by strong evidence of benefits [1,2]. These challenges are pronounced in obstetrics, where balancing maternal and fetal health complicates treatment decisions.

Although IVIG use in obstetrics is generally reserved for specific scenarios or refractory cases, it may be favored over other options anecdotally due to the lack of alternatives and perceived safety. The failure to include pregnant women in randomized controlled trials examining IVIG use in labelled indications [3-9], and the absence of high-quality studies for off-label obstetrical indications [10,11], leave significant gaps in evidence-based guidance. Existing literature largely overlooks IVIG applications in obstetrics [2,12-15], limiting understanding of its scope and potential misuse. This understanding is essential not only for optimizing patient care but also for ensuring the judicious use of a scarce resource.

This study assesses the obstetrical use of IVIG against established guidelines to inform policy, practice, and future research, which can help enhance obstetrical care and ensure stewardship of an expensive and limited resource. The objectives are two-fold: [1] to assess the frequency, dose, and indications of IVIG use in pregnancy, and [2] to assess concordance of IVIG use with the approved Canadian indications and the approved conditions of the Ontario Immunoglobulin Utilization Management Guidelines.

Methods

A retrospective cohort study was conducted using administrative data from The Ottawa Hospital Data Warehouse complemented by chart reviews from electronic health records to evaluate IVIG use in pregnancy. The study population comprised all pregnant women who received IVIG between 2007 and 2020 and delivered at the Ottawa Hospital. Data were collected on IVIG volumes, regimens, indications, and timing of administration during pregnancy. Health Canada licensed indications, which include primary immunodeficiencies, secondary immunodeficiencies, chronic lymphocytic leukemia, immune thrombocytopenia, chronic inflammatory demyelinating polyneuropathy, Guillain Barre Syndrome, and multifocal motor neuropathy were used to examine guideline adherence [16]. In addition, appropriateness was assessed using the Ontario Immunoglobulin Utilization Management Guidelines, which include both licensed and non-licensed indications for IVIG as approved for provincial use [17]. Nonlicensed indications could include conditions such as fetal/ neonatal alloimmune thrombocytopenia (F/NAIT), and hemolytic disease of the fetus and newborn (HDFN) [17]. Data were analyzed using descriptive statistics. The study was approved by Ottawa Health Science Network Research Ethics Board (CRRF 2826/Protocol 20210315-01H).

Results

Overall use and trends

From 2007 to 2020, a total of 122 pregnant patients represent- 58 ing 136 deliveries were treated with IVIG during their pregnancy at the Ottawa Hospital. Cumulatively, these patients 60 used 41,107.50 grams of IVIG. The volume accounted for 1.6 % 61 of the total IVIG consumption at the center over this period. While the total IVIG usage at the Ottawa Hospital increased during the period of the study, the relative proportion of IVIG 64 used in pregnancy also increased, with greater obstetrical use 65 seen in the latter period of the study (Figure 1A). Overall, the 66 annual mean proportion of IVIG volume used in pregnancy 67 relative to the total population was 1.53 % (Standard deviation 68 [SD]: 1.02). The annual mean volume of IVIG used in pregnancy was 2936.25 grams (SD: 2129.82), while the annual 70 mean volume for the total population at the center was 71 183,983.32 grams (SD: 31,527.03 grams). Specific years exhibit- 72 ing peaks in IVIG use in pregnancy were predominantly 73 driven by a higher number of F/NAIT cases, where pregnant 74 patients received weekly doses of IVIG for the entire second 75 and third trimesters (Figure 1B).

56

57

76

77

87

95

105

Indications for intravenous immunoglobulin use

The most prevalent indications for IVIG administration in 78 pregnancy were related to hematologic conditions. Specifically, maternal thrombocytopenia was identified in 56.6% 80 (77/136) of deliveries, and antenatal therapy for F/NAIT was 81 noted in 16.2 % (22/136) of deliveries. Other less common reasons, outlined in Table 1, included neurologic conditions 83 (9.6%), rheumatologic conditions (4.4%), dermatologic conditions (2.9%), obstetrical indications (2.2%), immunodeficiencies (1.5%), and renal conditions (0.7%).

Intravenous immunoglobulin utilization

In terms of IVIG consumption, the antenatal treatment of F/NAIT 88 accounted for the majority (64.3%) of the total IVIG used in all 89 pregnancies. This translated to 26,435 grams with a median of 90 1015 grams per pregnancy (Interquartile Range [IQR]: 542.5-1938.75 grams). Maternal thrombocytopenia followed, accounting 92 for a total of 6,952.50 grams (16.9%) used in all pregnancies and a 93 median of 70 grams per pregnancy (IQR: 40-90 grams).

Guideline adherence

Regarding the congruency of IVIG use with labelled Health 96 Canada indications, 38.2% (52/136) of the pregnancies 97 received IVIG for off-label indications. This use for indications 98 not approved by Health Canada, which includes F/NAIT, represented a substantial portion of the total volume of IVIG use in pregnancies, amounting for 33,025 grams (80.3% of the 101 total volume used). Other off-label indications under Health 102 Canada included Myasthenia Gravis, Multiple Sclerosis, 103 repeated Implantation Failure, Antiphospholipid syndrome, 104 Rheumatoid arthritis, Pemphigoid Gestationis, Anti-Ro antibodies, HDFN, Antibody-mediated rejection

Please cite this article as: R. Khalife et al., Obstetrical use of intravenous immunoglobulin: A single-centre retrospective study, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106225

134

Figure 1 – Temporal trends in IVIG administration from 2007-2020. (A) Total volume of IVIG administered in pregnancy and for the total population at our center, including proportion (%) of IVIG volume used in pregnancy. (B) Box and whisker plots of the volume of IVIG use per pregnancy.

transplant), Chronic Villitis, Small fiber polyneuropathy, Idiopathic Angioedema, and Autoimmune Necrotizing Myositis.

In contrast, only 17.6% (24/136) of pregnancies receiving IVIG, accounting for 5,475 grams (13% of total volume used), did not adhere to the approved indications in the Ontario Immunoglobulin Utilization Management Guidelines. These conditions included Pemphigoid Gestationis, Idiopathic angioedema, Antiphospholipid antibodies, Anti-Ro antibodies, Autoimmune Myositis, Multiple Sclerosis, repeated implantation failure and Chronic Villitis.

Discussion

108

109

110

111

112

114

115

118

119

120

121

123

124

This study offers a comprehensive picture of the patterns and scope of obstetrical use of IVIG, an area less explored in existing literature [2,13,14,18]. It demonstrates that IVIG use for obstetrical patients at the Ottawa Hospital has increased over the study period but accounts for only a small fraction of the overall IVIG consumption. The primary indications for IVIG administration during pregnancy included hematologic conditions, notably maternal thrombocytopenia, and the

treatment of F/NAIT. A considerable portion of IVIG use did not align with the approved Health Canada indications, and a smaller but still important proportion did not align with the Ontario Immunoglobulin Utilization Management Guidelines. This difference is due to F/NAIT being an off-label Health Canada indication but appropriate use in Ontario guidelines. Overall, the off-label use suggests a potential for optimizing its application in obstetrical care.

Maternal thrombocytopenia and prevention of F/NAIT accounted for a substantial portion of IVIG use in this study cohort and may be important clinical scenarios necessitating further research. Thrombocytopenia occurs in about 10% of pregnancies but rarely requires treatment [19]. In our experience, IVIG may be preferentially administered at the clinician's discretion to avoid corticosteroid exposure with the aim of improving the platelet count over certain thresholds for labor and delivery particularly to allow for neuraxial anesthesia (generally a platelet count >70-80×10⁹/L), despite the lack of evidence to suggest meaningful clinical benefits for the mother or newborn [20,21]. As for the prevention of F/ 145 NAIT, IVIG appears to be effective based on small observational studies [11] and has achieved consensus as the 147

149

150 151

152

153

154

155

156

157

158

159

160

161

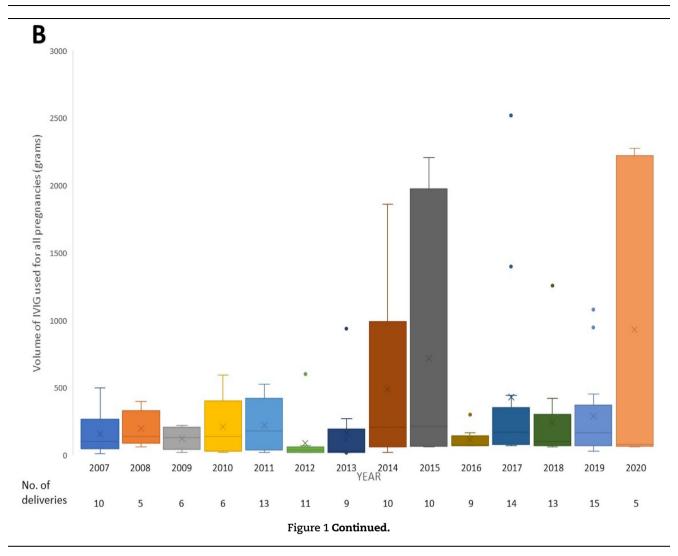
162

163

164

165

166


167

168

169

170

171

treatment of choice despite the lack of high-quality evidence [22]. Such practices raise questions about the broader clinical decision-making processes guiding IVIG use for maternal thrombocytopenia and F/NAIT, particularly in the context of balancing efficacy, safety, and resource allocation.

The findings of the current study complement other studies in non-obstetrical settings that have documented high rates of reliance on IVIG for various conditions without highquality evidence [1,14,15,18,23,24]. The proportion of nonadherence to guidelines in this study, accounting for 38.2 % of deliveries in terms of Canadian indications and 17.6% in terms of Ontario guidelines, underscores a potential area for improvement in clinical practice. While the upward trend of IVIG use and the divergence from licensed indications and/or guidelines could reflect a growing recognition of the obstetrical and non-obstetrical indications and evolving understanding of the therapeutic roles of IVIG [11,21,25], it also raises concerns about resource utilization and the need for ongoing surveillance to ensure that IVIG is used appropriately and sustainably [1,15,26]. IVIG stewardship programs that involve an intermediary healthcare professional to monitor, review and guide IVIG administration have shown great promise for optimizing adherence to guidelines, and reducing inappropriate administration of IVIG and associated costs without negatively impacting patient care [23,24]. Stewardship programs

that relied primarily on order request forms and handouts of 173 clinical practice guidance had little to no influence on IVIG 174 use [1].

175

186

190

The strengths of this study include its comprehensive data 176 collection spanning over a decade and its focus on a large, diverse population served by a major Canadian tertiary care and academic institution. From this dataset, it was possible to conduct a detailed analysis of IVIG usage patterns and guideline adherence. However, the retrospective nature of the 181 study limits the possibility to fully assess the clinical contexts leading to off-label IVIG use. Additionally, the single center focus may restrict the generalizability of the findings. This study also does not capture different practice patterns across centers, including center-specific approval processes for IVIG.

In conclusion, the present study sheds light on important 187 aspects of IVIG use in pregnancy, highlighting areas of both adherence and deviation from licensed indications and established guidelines. These findings underscore the need for stewardship programs to optimize IVIG use in pregnancy, ensuring that this valuable resource is used effectively and responsibly in clinical practice. Several questions remain, 193 particularly regarding the mechanisms driving off-label IVIG 194 use in pregnancy and its clinical outcomes. Future research 195 should aim to fill these gaps by exploring the safety, efficacy, and cost-effectiveness of IVIG in obstetrical care, especially 197

215

216

223

Diagnosis	No. of deliveries n (%)	Total volume of IVIG administered grams (%)	Median dose of IVIG in grams (IQR 25 th , 75 th)	Frequency of IVIG administration
Hematologic	107 (78.7)	35132.5 (85.5)	80 (60, 272.5)	
Maternal isolated thrombocytopenia (Gestational thrombocytopenia, Immune thrombocytopenia	77 (56.6)	6952.5 (16.9)	70 (40, 90)	Single*
Antenatal therapy for Fetal/Neonatal Alloimmune Thrombocytopenia	22 (16.2)	26435 (64.3)	1015 (542.5, 1938.75)	Recurrent*
Antiphospholipid syndrome / Anti- phospholipid antibodies	5 (3.7)	730 (1.8)	120 (100, 220)	Recurrent
Maternal red cell antibodies / Pre- vention of Hemolytic Disease of the Fetus and Newborn	3 (2.2)	1015 (2.5)	300 (280, 377.5)	Recurrent
Neurologic	13 (9.6)	2230 (5.4)	165 (115, 180)	
Myasthenia Gravis	5 (3.7)	695 (1.7)	175 (70, 175)	Recurrent*
Guilain-Barre Syndrome	3 (2.2)	350 (0.9)	115 (110 – 125)	Single
Chronic inflammatory demyelinat- ing polyneuropathy	2 (1.5)	465 (1.1)	N/A	Single
Multiple Sclerosis	2 (1.5)	440 (1.1)	N/A	Recurrent
Small fiber polyneuropathy	1 (0.7)	280 (0.7)	N/A	Recurrent
Rheumatologic	6 (4.4)	1365 (3.3)	220 (165, 290)	
Maternal Anti-Ro Antibodies	4 (2.9)	1025 (2.5)	280 (200, 336.25)	Recurrent*
Rheumatoid Arthritis	1 (0.7)	180 (0.4)	N/A	Recurrent
Autoimmune necrotizing myositis	1 (0.7)	160 (0.4)	N/A	Recurrent
Dermatologic	4 (2.9)	740 (1.8)	190 (165, 210)	
Idiopathic Angioedema Urticaria	1 (0.7)	180 (0.4)	N/A	Recurrent
Pemphigoid Gestationis	2 (1.5)	440 (1.1)	N/A	Recurrent
Undiagnosed recurrent cutaneous eruptions	1 (0.7)	120 (0.3)	N/A	Recurrent
Obstetrical	3 (2.2)	905 (2.2)	300 (280, 322.5)	
Chronic Villitis	2 (1.5)	645 (1.6)	N/A	Recurrent
Repeated Implantation Failure	1 (0.7)	260 (0.6)	N/A	Recurrent
Immunodeficiencies	2 (1.5)	315 (0.8)	N/A	
Selective IgA deficiency	1 (0.7)	35 (0.1)	N/A	Single
Secondary Immunodeficiency (Hypogammaglobulinemia)	1 (0.7)	280 (0.7)	N/A	Recurrent
Renal	1 (0.7)	420 (1.0)		
Acute antibody-mediated rejection in renal transplant	1 (0.7)	420 (1.0)	N/A	Recurrent

for conditions lacking alternative treatments. Prospective 198 studies and randomized controlled trials involving pregnant women are essential to establish evidence-based guidelines 200 for IVIG use in this population, ensuring both maternal and

fetal well-being while maintaining resource stewardship.

Author contributions

203

209

RK, BN, IP, and AT performed the research. RK, DEC, DF, AK, JM, **Q**224 KW, and AT designed the research study and grant proposal. IP and MT contributed essential data. RK, BN and AT analyzed the 206 207 data. RK wrote the paper. All authors revised the paper critically 208 and approved the submitted and final versions.

Funding statement

This study was funded by the Canadian Blood Services' Blood Efficiency Accelerator Program.

Ethics approval

The study was approved was approved by Ottawa Health Science Network Research Ethics Board (CRRF 2826/Protocol 214 20210315-01H).

Conflicts of interest

The authors do not have any conflict of interest to declare 217 pertaining to this study. 218

219 REFERENCES

1. Feasby TE, Quan H, Tubman M, Pi D, Tinmouth A, So L, et al. Appropriateness of the use of intravenous immune globulin before and after the introduction of a utilization control pro-222 gram. Open Med. 2012;6(1):28-34.

Please cite this article as: R. Khalife et al., Obstetrical use of intravenous immunoglobulin: A single-centre retrospective study, Hematology, Transfusion and Cell Therapy (2025), https://doi.org/10.1016/j.htct.2025.106225

231

232

233

234

235

236

249

250

251

259

260

261

262

263

- 224 2. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous 225 immunoglobulin. Clin Exp Immunol. 2005;142(1):1-11.
- 226 3. Federico P, Zochodne DW, Hahn AF, Brown WF, Feasby TE. 227 Multifocal motor neuropathy improved by IVIg [5]. Neurology. 228 2000:55:1256-62.
 - 4. Paul C, Lahfa M, Bachelez H, Chevret S, Dubertret L. A randomized controlled evaluator-blinded trial of intravenous immunoglobulin in adults with severe atopic dermatitis. Br J Dermatol. 2002;147(3):518-22.
 - 5. Ancona KG, Parker RI, Atlas MP, Prakash D. Randomized trial of high-dose methylprednisolone versus intravenous immunoglobulin for the treatment of acute idiopathic thrombocytopenic purpura in children. J Pediatr Hematol Oncol. 2002;24(7):540-4.
- 6. Boughton BJ, Jackson N, Lim S, Smith N. Randomized trial of 237 238 intravenous immunoglobulin prophylaxis for patients with chronic lymphocytic leukaemia and secondary hypogamma-239 240 globulinaemia. Clin Lab Haematol. 1995;17(1):75-80.
- 7. Hahn AF, Bolton CF, Zochodne D, Feasby TE. Intravenous 241 242 immunoglobulin treatment in chronic inflammatory demyelinating polyneuropathy. A double-blind, placebo-controlled, 243 244 cross-over study. Brain. 1996;119(4):1067-77.
- 245 8. Chapel HM, Lee M, Hargreaves R, Pamphilon DH, Prentice AG, Chapel HM, et al. Randomised trial of intravenous immuno-246 247 globulin as prophylaxis against infection in plateau-phase multiple myeloma. Lancet. 1994;343(8905):1059-63. 248
 - 9. Hughes RAC. Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barre syndrome. Lancet. 1997;349(9047):225-30.
- 10. Shi Y, Tan D, Hao B, Zhang X, Geng W, Wang Y, et al. Efficacy 252 253 of intravenous immunoglobulin in the treatment of recurrent spontaneous abortion: A systematic review and meta-analy-254 sis. Am J Reprod Immunol. 2022;88(5):1-9. 255
- 256 11. Branch DW, Porter TF, Belfort MA, Paidas MJ, Gonik B. Obstet-257 ric uses of intravenous immunoglobulin: successes, failures, and promises. J Allergy Clin Immunol. 2001;108(4):S133-8. 258
 - 12. Biotext Science Information Consultants (Canberra ACT., (Australia) NBA. A systematic literature review and report on the efficacy of intravenous immunoglobulin therapy and its risks [electronic resource]: final report v04 /Biotext Science Information Consultants. 2004.
- 264 13. Hanna K, Poulin-Costello M, Preston M, Maresky N. Intrave-265 nous immune globulin use in Canada. Can J Clin Pharmacol = J Can Pharmacol Clin. 2003;10(1):11-6. 266
- 267 14. Torbic H, Abdul-Wahab SS, Ennala S, Guduguntla N, Han X, 268 Wang X, et al. Single-center experience of outcomes and prescribing patterns of IV immunoglobulin use in critically ill 269 270 patients. Crit Care Explor. 2021;3(1):E0314.
- 271 Constantine MM, Thomas W, Whitman L, Kahwash E, Dolan S, 272 Smith S, et al. Intravenous immunoglobulin utilization in the

Canadian Atlantic provinces: A report of the Atlantic Collabo- 273 rative Intravenous Immune Globulin Utilization Working 274 Group. Transfusion (Paris). 2007;47(11):2072-80.

275

276

279

280

282

283

284

285

286

287

288

289

291

293

297

298

299

300

302

303

304

306

307

308

309

310

311

317

320

321

- 16. Harding SR, Cowan J, Jennings S. Immunoglobulin products. In: Khadelwal A, Abe T, eds. Clinical Guide To Transfusion 277 [Internet] [Internet], Ottawa: Canadian Blood Services; 2024. 278 Available from: https://professionaleducation.blood.ca/en/ transfusion/clinical-guide/immunoglobulin-products.
- 17. Ontario Regional Blood Coordinating Network (ORBCON), 281 Ontario Immune Globulin (IG) Utilization Management Guidelines. 2018;0-11.
- 18. Darabi K, Abdel-Wahab O, Dzik WH. Current usage of intravenous immune globulin and the rationale behind it: the Massachusetts General Hospital data and a review of the literature. Transfusion (Paris). 2006;46(5):741-53.
- 19. Gernsheimer T, James AH. Stasi R. How I treat thrombocytopenia in pregnancy. Blood. 2013;121(1):38-47.
- 20. Sun D, Shehata N, Ye XY, Gregorovich S, De France B, Arnold 290 DM, et al. Corticosteroids compared with intravenous immunoglobulin for the treatment of immune thrombocytopenia in 292 pregnancy. Blood. 2016;128(10):1329-35.
- 21. Brand A, De Angelis V, Vuk T, Garraud O, Lozano M, Politis D. 294 Review of indications for immunoglobulin (IG) use: narrowing 295 the gap between supply and demand. Transfus Clin Biol 296 2021;28(1):96-122. https://doi.org/10.1016/j.tracli.2020.12.005. Available from:.
- 22. Lieberman L, Greinacher A, Murphy MF, Bussel J, Bakchoul T, Corke S, et al. Fetal and neonatal alloimmune thrombocytopenia: recommendations for evidence-based practice, an international approach. Br J Haematol. 2019 May;185 (3):549-62.
- 23. Sarker K, Vanstone JR, Adigun O, Boutilier B, Comeau J, Degelman ML, et al. Development, implementation and impact of an immunoglobulin stewardship programme in Saskatchewan. Canada. Vox Sang. 2024(January):1-9.
- 24. Derman BA, Schlei Z, Parsad S, Mullane K, Knoebel RW. Changes in intravenous immunoglobulin usage for hypogammaglobulinemia after implementation of a stewardship program. JCO Oncol Pract. 2021;17(3):e445-53.
- 25. Leong H, Stachnik J, Bonk ME, Matuszewski KA. Unlabeled 312 uses of intravenous immune globulin. Am J Heal Pharm. 313 2008;65(19):1815-24.
- 26. Canadian Blood Services, National Advisory Committee on 315 Blood and Blood Products. The National Plan for Management 316 of Shortages of Immunoglobulin Products (Ig) - Interim Guidance. 2020;61. Available from: https://www.nacblood.ca/ resources/shortages-plan/ The National Plan for Management 319 of Shortages of Immunoglobulin Products (Ig) Interim Guidance_July 27 2020.Published.pdf