ARTICLE IN PRESS

HEMATOL TRANSFUS CELL THER. 2025;xxx(xx):106222

HEMATOLOGY, TRANSFUSION AND CELL THERAPY

www.htct.com.br

Original article

Outcomes after bone marrow versus peripheral blood haploidentical hematopoietic cell transplantation using post-transplant cyclophosphamide-based graft-versushost disease prophylaxis

Muhammad Kashif Amin ^{a,b}, Moazzam Shahzad ^{b,c}, Abat Khan ^{a,b},
Valiko Begiashvili ^{a,b}, Ushna Khan ^{a,b}, Matthew McGuirk ^{a,b},
Shaun DeJarnette ^a, Sibgha Gull Chaudhary ^{a,b}, Iqra Anwar ^{a,b},
Nausheen Ahmed ^{a,b}, Al-Ola Abdallah ^{a,b}, Sunil H. Abhyankar ^{a,b},
Joseph P. McGuirk ^{a,b}, Anuraq K. Singh ^{a,b}, Muhammad Umair Mushtaq ^{a,b,*}

ARTICLE INFO

Article history:
Received 3 October 2024
Accepted 21 September 2025
Available online xxx

Keywords:

Haploidentical hematopoietic stem cell transplant Peripheral blood stem cell graft Bone marrow graft Post-transplant cyclophosphamidebased GVHD prophylaxis Outcomes

ABSTRACT

Background: This study aims to compare the outcomes of bone marrow (BM) to peripheral blood stem cells (PBSC) grafts in haploidentical hematopoietic cell transplantation using post-transplant cyclophosphamide-based graft-versus-host disease (GvHD) prophylaxis. Methods: A single-center retrospective analysis of all adult patients who underwent haploidentical transplants with at least one year of follow-up was conducted. Bivariate analyses were performed using chi-square tests and t-tests. Data were analyzed using SPSS with statistical significance being defined at p-value <0.05.

Results: The study included 176 transplant recipients: 65% received PBSC and 35% received BM grafts. After a median follow-up of 21 months (range: 0–73 months), neither median overall survival nor disease-free survival had been reached. One-year overall survival (BM 75% versus PBSC 74%; p-value=0.898) and one-year disease-free survival (63% both groups; p-value=0.994) were similar between groups. PBSC recipients exhibited earlier neutrophil engraftment (17 days versus 18 days; p-value=0.022). The incidence of cytokine release syndrome was higher in PBSC (90% versus 37%) grafts (p-value <0.001). The incidences of Grade II-IV acute GvHD, relapse, non-relapse mortality, platelet engraftment, one-year chronic GvHD, and GvHD-free relapse-free survival were similar across both groups.

Conclusions: Haploidentical HSCT recipients observed similar outcomes regardless of graft source. Marginally faster neutrophil engraftment was observed in PBSC recipients. These findings suggest flexibility in using graft source for haploidentical transplants, though prospective studies are needed to confirm these results.

66205, USA

E-mail address: mmushtaq@kumc.edu (M.U. Mushtaq).

2531-1379/© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^a Division of Hematologic Malignancies & Cellular Therapeutics, University of KS Medical Center, KS City, KS, USA

^b Mikael Rayaan Foundation Global Transplantation and Cellular Therapy Consortium, KS City, KS, USA

^c H Lee Moffitt Cancer Center, Tampa, FL, USA

^{*} Corresponding author at: Division of Hematologic Malignancies and Cellular Therapeutics, University of KS Medical Center, 2330 Shawnee Mission Parkway, Suite 210, MS 5003, Westwood, KS https://doi.org/10.1016/j.htct.2025.106222

5

6

7

8

9

10

11

12

13

14

15

16

17 18

20

21

22

23

24

25

26

27

28

29

30

32

34

35

36

37

38

39

40

42

43

44

45

46

47

48

49

© 2025 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) serves as a crucial therapeutic approach for a range of 2 hematologic malignancies and non-malignant disorders [1]. 4 However, its success relies upon the availability of suitable human leukocyte antigen (HLA)-matched donors, a challenge aggravated by donor scarcity [2]. Haploidentical stem cell transplant (haplo-HSCT) donation, when combined with post-transplant cyclophosphamide (PT-Cy), has revolutionized transplant accessibility for patients without fully matched donors [3]. This approach has confirmed the feasibility of using partially matched-related donors, significantly expanding available donor options. It demonstrates low rates of severe graft-versus-host disease (GvHD) which are comparable to those seen when bone marrow (BM) is used instead of peripheral blood stem cells (PBSC) in haplo-HSCT [4]. Additionally, high-dose PT-Cy selectively removes alloreactive T cells, effectively reducing the risk of GvHD while preserving the graft-versus-leukemia effect [5,6]. This method has particularly broadened transplant accessibility in regions with limited donor availability [7–9].

Published studies report that survival rates are comparable between the two graft sources, with PBSCs demonstrating lower relapse rates and faster engraftment [10,11]. However, PBSC grafts are associated with increased transplant-related mortality, primarily due to a higher incidence of GvHD [12]. In this study, the outcomes of haplo-HSCT using PT-Cy-based GvHD prophylaxis were analyzed, comparing the results based on the graft source. The aim was to clarify the relative efficacy and safety profiles of each graft source and to explore their clinical implications, thereby enhancing transplant practices and optimizing patient outcomes in haplo-HSCT.

Methods

Design, setting, and patients 33

A single-center retrospective study was conducted at the University of KS Medical Center, examining all adult haplo-HSCT recipients from August 2016 to July 2021. The study included 176 patients with at least one year of post-transplantation follow-up. The cohort consisted of adult patients who received their first allo-HSCT from donors mismatched at two or more HLA loci, independent of conditioning regimen and indication for allo-HSCT. Patients who received manipulated grafts (ex vivo or in vivo T-cell depletion, or ex vivo engineered T cells) were excluded as were those with matched unrelated, mismatched unrelated, matched related, or umbilical cord blood donors. All recipients of haplo-HSCT were administered standard GvHD prophylaxis consisting of PT-Cy, mycophenolate mofetil (MMF), and tacrolimus (continuing until Day +60 after the transplant). The myeloablative and reduced-intensity conditioning (RIC) regimens utilized are listed in Table 1. The institutional review board approved the study.

Data collection, outcomes, and key definitions

51

81

Data were collected by review of the electronic medical 52 records. Demographic, clinical, and pathologic factors were 53 ascertained at the time of HSCT. The primary objective of this 54 study was to compare overall survival (OS) between the 55 groups. The secondary objectives were to compare rates of 56 acute and chronic GvHD, cytokine release syndrome (CRS), 57 neutrophil and platelet engraftment, non-relapse mortality 58 (NRM), relapse, and disease-free survival (DFS). Neutrophil 59 recovery was defined as achieving an absolute neutrophil 60 count (ANC) $>0.5 \times 10^9/L$ for three consecutive days. Platelet 61 recovery was defined as achieving a platelet count $> 20 \times 10^9 / L$ 62 without transfusion requirement for seven consecutive days. 63 Disease relapse, progression, and death were treated as 64 events. NRM was defined as time to death without relapse or progression. Relapse was defined as the molecular, cytogenetic, or hematologic recurrence of the primary disorder. 67 DFS was defined as survival without relapse or progression. 68 Acute GvHD (aGvHD) was staged and graded according to the 69 Mount Sinai aGvHD International Consortium criteria [13]. CRS was graded based on American Society for Transplantation and Cellular Therapy Consensus Guidelines [14]. Chronic 72 GvHD (cGvHD) was staged and graded according to the 2014 73 National Institutes of Health criteria. Causes of death were 74 coded according to the Center for International Blood and 75 Marrow Transplant Research recommendations; specifically, 76 if a patient had an active or uncontrolled GvHD and concurrent infection at the time of death, then GvHD was coded as 78 the primary cause of death and infection was coded as a contributing cause.

Statistical analysis

Descriptive statistics were used to compare baseline demo- 82 graphic characteristics. Categorical data were compared using 83 the Chi-square test. Continuous data were compared using 84 ANOVA or t-test. Univariate and multivariate Cox regression 85 analyses were conducted to investigate factors associated 86

Table 1 - Transplant conditioning regimens. Regimen n Myeloablative (n = 55) Flu/TBI 49 Bu/Flu/Cv 6 Reduced intensity (n = 121) Flu/Cv/TBI 105 9 Flu/Mel/TBI Flu/Cy/TBI/ATG 6 Flu/Cy/TBI/ATG/Thio

Bu: Busulfan; Cy: Cyclophosphamide; Flu: Fludarabine; TBI: Total body irradiation; Mel: Melphalan; ATG: Anti-thymocyte Globulin; Thio: Thiotepa

163

171

172

184

189

190

196

with OS, DFS, NRM, and relapse including the graft source; the hazard ratio (HR) with 95% confidence intervals (95% CIs) were obtained. For regression models, PBSC recipients were compared with reference to BM graft recipients. Univariate regression analyses included correlation of key variables with the post-transplant outcomes, including age, sex, ethnicity, Karnofsky performance status (KPS), hematopoietic stem cell transplantation-specific comorbidity index (HSCT-CI), hematologic diagnosis, disease status (complete remission versus others), recipient cytomegalovirus (CMV) serostatus, donor CMV serostatus, donor age, donor sex, conditioning regimen, and GvHD prophylaxis. Significant factors identified in univariate analyses were entered into a multivariate analysis for the respective outcome. Data were analyzed using SPSS version 28 with statistical significance being defined as a p-value

Results

87

88 89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

127

131

132 133

134

135

136

138

Baseline and clinical characteristics

The study encompassed 176 haplo-HSCT involving 114 (65%) 105 PBSC and 62 (35%) BM grafts. The median age of recipients 106 was 54 years (range: 18-74); 119 (68 %) were male. The racial 107 distribution was primarily Caucasian (123; 70%), followed by 108 Hispanic (23; 13%), Afro-American (16; 9%), and other ethnici-109 ties (14; 8%). The most common hematologic diagnoses were 110 acute myeloid leukemia (AML) in 74 patients (42%), other myeloid disorders in 41 (23 %), acute lymphoid leukemia (ALL) 112 in 17 (10 %), lymphoma in 33 (19 %), and other conditions in 11 113 (6%). A pre-transplant HSCT-CI score of 3 or higher was 114 recorded in 93 patients (53 %). KPS was \geq 90 % in 59 (34 %) and 60-80 % in 117 (67 %) patients. RIC was administered to 121 116 117 recipients (69%) and myeloablative conditioning (MAC) to 55 118 (31%). CMV seropositivity was identified in 109 recipients 119 (62%) and 101 donors (57%). At the time of transplantation, 111 recipients (63%) were in complete remission. The median 120 CD34⁺ cell dose was 5.0 × 10⁶ per kg for PBSC recipients and 2.8×10^6 per kg for BM recipients (p-value <0.001). These data 122 are summarized in Table 2. 123

Primary and secondary outcomes 124

With a median follow-up of 21 months (range: 0-73 months), 125 OS and DFS were not reached in either the BM or PBSC haplo-126 HSCT groups. The one-year OS rates were 75% for BM and 74% for PBSC (p-value = 0.898), and the one-year DFS rates were identical at 63 % for both groups (p-value = 0.994). PBSC 129 recipients experienced earlier neutrophil engraftment at 130 17 days compared to 18 days for BM recipients (pvalue = 0.022).

The incidences of Grade II-IV acute GvHD were nearly identical at 50% for BM and 51% for PBSC (p-value = 0.875). Relapse rates were 22% for PBSC and 26% for BM (pvalue = 0.579), while NRM rates were 17 % for PBSC and 20 % for BM (p-value = 0.682). The median times to platelet engraftment were 28 days for PBSC and 31 days for BM (pvalue = 0.092). Neutrophil recovery by Day +28 was 95 % for PBSC versus 90% for BM (p-value = 0.349), and platelet recovery by Day +100 was 90 % for PBSC compared to 81 % for 141 BM (p-value = 0.099). Rates of primary graft failure (PGF) and one-year chronic GvHD were also similar, with PGF at 2% for PBSC versus 5 % for BM (p-value = 0.347) and chronic GvHD at 35% for PBSC versus 38% for BM (p-value = 0.410). The oneyear GvHD-free relapse-free survival rate (GRFS) was 67 % for PBSC and 61% for BM (p-value = 1.00). The overall incidence of CRS was 71%, significantly higher in PBSC at 90% compared to 37 % for the BM group (p-value <0.001). CRS grades were distributed as follows: Grade 1 occurred in 74 % of PBSC recipients versus 34 % for BM (p-value <0.001), Grade 2 in 14 % for PBSC and 0% for BM (p-value <0.001), and Grade 3 and Grade 4 were both seen in 1–2% for both groups. In the subgroup analysis stratified by conditioning intensity, neutrophil engraftment (17 days versus 18 days; p-value = 0.017) was faster with PBSC compared to BM grafts and no statistically significant association was noted in rates of acute or chronic GvHD, NRM, relapse, DFS or OS among the myeloablative transplant recipients (n = 55). Among the RIC transplant recipients, no statistically significant differences were noted in neutrophil and platelet engraftment, acute GvHD, NRM, Relapse, DFS, and OS between the BM and PBSC groups (Table 3).

Discussion 164

This retrospective single-center study analyzes the outcomes of haploidentical allo-HSCT using either PBSC or BM as the graft source, with PT-Cy for GvHD prophylaxis. The study findings show comparable one-year OS and DFS rates between the two graft sources. This aligns with several other studies that have also found no significant differences in OS, DFS, and NRM between different graft sources [7,15,16].

The choice of conditioning regimen is a critical factor in haplo-HSCT and may interact with graft source to influence outcomes. In the current cohort, RIC was more frequently used in the BM group (87% versus 59% in PBSC; p-value <0.001), reflecting its common application in older and comorbid patients. Subgroup analysis (Table 2) revealed faster neutrophil engraftment with PBSC in MAC recipients (17 versus 18 days; p-value = 0.017), but no significant differences in acute or chronic GvHD, relapse, NRM, DFS, or OS were observed between graft sources in either the MAC or RIC cohorts. Prior studies suggest RIC may mitigate GvHD risk using PBSC grafts by reducing inflammatory responses, though potentially at the cost of higher relapse rates in certain malignancies [15-17]. Conversely, MAC may increase GvHD risk with PBSC due to higher CD34+ cell doses (median 5.0 versus 2.8×10^6 /kg in the present study; p-value <0.001). The imbalance in conditioning regimens limits direct comparisons, and further studies are needed to elucidate how conditioning intensity modulates graft source effects.

A notable imbalance in disease status was observed, with 77 % of BM recipients in complete remission (CR) at transplant compared to 55% of PBSC recipients (p-value = 0.005). This disparity could bias outcomes toward the BM group, as CR is a strong predictor of improved OS and DFS. To address this, multivariate Cox regression analyses adjusted for disease status, conditioning intensity, and other covariates were

200

202

203

205

206

208

209

211

212

	Total (n = 176)	PBSC (n = 114)	BM (n = 62)	P-value
Age - median years (range)	54 (18-74)	53 (19–73)	54 (18-74)	0.706
Sex - n (%)				
Male	119 (68)	81 (71)	38 (61)	0.238
Female	57 (32)	33 (29)	24 (39)	
Ethnicity - n (%)				
Caucasian	123 (70)	76(67)	47(76)	0.561
African American	23 (13)	17 (15)	6 (10)	
Hispanic	16 (9)	12 (10)	4 (6)	
Others	14 (8)	9 (8)	5 (8)	5
Karnofsky performance status - n (%)				
≥90 %	59 (33.5)	34 (30)	25 (40)	0.138
60-80 %	117 (66.5)	80 (70)	37 (60)	
Hematopoietic stem cell transplantation-specific comorbidity index -	n (%)			
0-2	83 (47)	55 (48)	28 (45)	0.753
≥3	93 (53)	59 (52)	34 (55)	
Hematologic Diagnosis - n (%)	, ,	, ,	` ,	
Acute myeloid leukemia	74 (42)	43 (38)	31 (50)	0.027
Myeloid disorders ^a	41 (23)	33 (29)	8 (13)	
Acute lymphoblastic leukemia	17 (10)	10 (9)	7 (11)	
Lymphoma	33 (19)	24 (21)	9 (15)	
Others	11 (6)	4 (3)	7 (11)	
Disease Status - n (%)	()	· /	, ,	
Complete remission	111 (63)	63 (55)	48 (77)	0.005
Others ^b	65 (37)	51 (45)	14 (23)	
Recipient cytomegalovirus serostatus - n (%)	(- /	- (- /	(- /	
Negative	67 (38)	48 (42)	19 (31)	0.147
Positive	109 (62)	66 (58)	43 (69)	
Donor cytomegalovirus serostatus - n (%)	()	(/	- ()	
Negative	75 (43)	46 (40)	29 (47)	0.429
Positive	101 (57)	68 (60)	33 (53)	0.123
Donor age - median years (range)	32 (10–65)	34 (11–65)	31 (10–64)	
Donor sex - n (%)	32 (10 03)	31(11 33)	31 (13 31)	
Male	111 (63)	73 (64)	38 (61)	0.746
Female	65 (37)	41 (36)	24 (39)	0., 10
Conditioning - n (%)	33 (3.)	11 (00)	=1 (05)	
Myeloablative	55 (31)	47 (41)	8 (13)	< 0.001
Reduced intensity conditioning	121 (69)	67 (59)	54 (87)	(0.001
Graft cell dose (Median CD34 cells x10 ⁶ per kg)	4.9 (4.3–5.0)	5.0 (5.0–5.2)	2.8 (2.3–3.2)	< 0.001

myeloid disorders include myelodysplastic syndromes, myeloproliferative neoplasms, and chronic myeloid leukemia.

performed, revealing no independent effect of graft source on OS (HR: 1.02; 95 % CI: 0.68-1.53; p-value = 0.898), DFS (HR: 1.00; 95 % CI: 0.67-1.49; p-value = 0.994), relapse (HR: 0.88; 95 % CI: 0.47-1.65; p-value = 0.579), or NRM (HR: 0.92; 95 % CI: 0.49 -1.74; p-value = 0.682). These findings suggest that while CR status and conditioning are critical prognostic factors, they do not significantly alter the comparative effectiveness of PBSC versus BM in the current cohort. Nonetheless, these factors should be considered when selecting graft sources to optimize patient outcomes.

While some studies have reported better OS with PBSC (due to higher doses of CD34+ cells potentially leading to improved outcomes) [18], others have indicated poorer outcomes associated with higher NRM rates in PBSC recipients compared to those receiving BM grafts [8,18,19]. For example, Nagler et al. noted worse life expectancy, OS, and GRFS with PBSC [7,9,20]. The results of this study highlight the importance of considering multiple independent factors, including pre-transplant disease status, the Hematopoietic Cell

Transplantation-Specific Comorbidity Index, and condition- 217 ing regimen, beyond the choice of graft source, which can sig- 218 nificantly impact transplant outcomes [8,15,16,20].

Recipients of PBSC exhibited an earlier neutrophil engraft- 220 ment by one day, indicating a potential advantage in the 221 speed of hematopoietic recovery with PBSC grafts. However, this modest difference may not be clinically relevant. Several other studies also reported earlier neutrophil engraftment in 224 patients who receive PBSC versus BM grafts [9,16,21]. Kato et 225 al. demonstrated an association of total CD34+ dose to 226 engraftment regardless of graft source [21]. The results here 227 differ from other studies where similar median times for neutrophil and platelet engraftment were noted [8,18,22].

228

229

In line with previous literature [8,11,22-25], similar inci-230 dences of Grade II-IV acute GvHD were observed between BM 231 and PBSC recipients in this study. Consistent with previous 232 studies, similar incidences of one-year chronic GvHD were 233 also observed [8,16]. The incidence of GRFS, a composite out- 234 come of GvHD and RFS, was comparable in both groups. 235

b Includes partial response (n = 36; 8%), stable disease (n = 89; 20%), progressive disease (n = 31; 7%), and not available (n = 14; 3%).

260

	Total (n = 176)	PBSC (n = 114)	BM (n = 62)	p-value
Follow-up - median months (range)	21 (0.3-73)	21 (0.3-69)	22 (0.3-73)	0.331
Neutrophil engraftment - median days (95 % CI)	17 (17-18)	17 (17-19)	18 (18-20)	0.022
Day +28 neutrophil recovery (>0.5 \times 10 ³ / μ L) - n (%)	164 (93)	108 (95)	56 (90)	0.349
Platelet engraftment - median days (95 % CI)				
$>20 \times 10^{3}/\mu L$	27 (26–28)	27 (26-28)	28 (26-30)	0.195
$>50 \times 10^{3}/\mu L$	29 (27-31)	28 (27-31)	31 (29-36)	0.092
Day +100 platelet recovery (>20 $ imes$ 10 $^3/\mu$ L) - n (%)	153 (87)	103 (90)	50 (81)	0.099
Primary graft failure - n (%)	5 (3)	2 (2)	3 (5)	0.347
Day +100 acute GvHD - n (%)				
Grade 2–4	88 (50)	58 (51)	30 (48)	0.875
Grade 3–4	14 (8)	9 (8)	5 (8)	1.000
One-year chronic GvHD - n (%)				
All	62 (35)	43 (38)	19 (31)	0.410
Extensive	56 (32)	38 (33)	18 (29)	0.614
Relapse - n (%)	41 (23)	25 (22)	16 (26)	0.579
Non-relapse mortality - n (%)	40 (23)			0.998
One-year non-relapse mortality	31 (18)	19 (17)	12 (20)	0.682
Cytokine Release Syndrome - n (%)	125 (71)	102 (90)	23 (37)	< 0.001
Cytokine Release Syndrome grade - n (%)				
Grade 0 (No CRS)	51 (29)	12 (10)	39 (63)	< 0.001
Grade 1	105 (60)	84 (74)	21 (34)	
Grade 2	16 (9)	16 (14)	0 (0)	
Grade 3	2 (1)	1(1)	1 (1.5)	
Grade 4	2 (1)	1(1)	1 (1.5)	
Cause of death - n (%)			` ,	
Relapse/progression	22 (32)	13 (30)	9 (38)	0.599
GvHD	10 (15)	5 (11)	5 (21)	
Infections	23 (34)	17 (39)	6 (25)	
Organ failure	3 (4)	2 (5)	1 (4)	
Graft failure	3 (4)	1 (2)	2 (8)	
Others, non-transplant-related	5 (7)	4 (9)	1 (4)	
Not available	2 (3)	2 (5)	0 (0)	
Disease-free survival				
Median months (range)	NR	NR	NR	0.994
One-year disease-free survival - n (%)	111 (63)	72 (63)	39 (63)	1.000
Overall survival	,	, ,	, ,	
Median months (range)	NR	NR	NR	0.898
One-year overall survival - n (%)	131 (74)	85 (75)	46 (74)	1.000
One-year GvHD-free Relapse-free survival - n (%)	117 (66.5)	76 (67)	41 (61)	1.000

BM: Bone marrow; PBSC: Peripheral blood stem cells; NRM: Non-relapse mortality; GvHD: Graft-versus-host disease.

Several other studies reported higher incidences of acute and chronic GvHD in the PBSC compared to BM group [9,15,16,18,21,22]. Various other pre-transplant factors such as low body mass index (BMI) and older age, are independently associated with a higher risk of GvHD [26,27]. No difference in graft failure was found between both cohorts in the present study. In a large retrospective study, Olsson et al. reported lower rates of PGF in patients receiving PBSC compared to BM [28]. They attributed this improvement to the higher doses of graft cells typically administered in PBSC transplants. Another factor contributing to PGF reported in literature is donor-specific anti-HLA antibodies [29,30].

236

237

238

239

240

241

242

243

244 245

246

247

248

250

251

CRS after haplo-HSCT is often associated with early T-cell reconstitution and low incidence of post-transplant relapse [31]. However, research has noted an increased risk of infections following CRS, potentially due to its impact on neutrophil recovery [32]. In this study, the majority of CRS cases were of mild severity (Grades 1-2), aligning with findings 253 from previous research [33]. Additionally, the higher incidence of CRS observed in the PBSC group is consistent with earlier studies [34]. In the present study population, infections and relapse/progression of the disease emerged as the most common causes of death, consistent with findings in previous literature where GvHD-related death also featured prominently [9,22,35].

This study has several limitations inherent to its retrospective design, including selection bias, confounding by indication, and limited statistical power. With a sample size of 176 patients, the analysis may be underpowered to detect small but clinically meaningful differences in outcomes such 265 as GvHD, relapse, or GRFS, particularly in subgroups defined 266 by conditioning intensity or disease status. The heteroge- 267 neous patient population, encompassing diverse hematologic 268 malignancies, ethnicities, and conditioning regimens, further 269

- complicates the generalizability of the findings. Additionally,
- the relatively short median follow-up of 21 months may not
- capture late events.

Conclusion

These findings suggest that haplo-HSCT with PT-Cy yields comparable rates of acute and chronic GvHD, relapse, NRM, 275 DFS, and OS between BM and PBSC graft sources. A slightly 276 faster neutrophil engraftment with PBSC offers a potential advantage, though its clinical significance is limited. Imbalan-278 ces in disease status and conditioning intensity highlight the 279 importance of patient-specific factors in graft selection. These results suggest flexibility in choosing either BM or PBSC, 281 allowing clinicians to tailor decisions based on donor avail-282 ability and patient characteristics, such as CR status and conditioning regimen. Prospective randomized trials are needed 284 to confirm these findings and optimize transplant strategies.

Conflicts of interest

- The authors declare no competing financial interests.
- REFERENCES 288

294

295

296

297

298 299

300 301

302

303

304

305

306

307

308

309

310

311

312

313 314

315

- 1. Snowden JA, Sánchez-Ortega I, Corbacioglu S, Basak GW, Cha-289 290 bannon C, de la Camara R, et al. Indications for haematopoietic cell transplantation for haematological diseases, solid 291 292 tumours and immune disorders: current practice in Europe, 293 2022. Bone Marrow Transpl. 2022;57(8):1217-39.
 - 2. Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl. J. Med. 2014;371(4):339-48.
 - 3. Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using posttransplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J. Clin. Oncol. 2013:31(10):1310-6.
 - 4. Solomon SR, Sizemore CA, Sanacore M, Zhang X, Brown S, Holland HK, et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol. Blood Marrow Trans. Plant. 2012;18(12):1859-66.
 - 5. Rozmus J, Bhatt ST, Buxbaum NP, Cuvelier GD, Li AM, Kitko CL, et al. Is it possible to separate the graft-versus-leukemia (GVL) effect against B cell acute lymphoblastic leukemia from graftversus-host disease (GVHD) after hematopoietic cell transplant? Front. Pediatr. 2022;10:796994.
- 6. Mohty R, Al Kadhimi Z, Kharfan-Dabaja M. Post-transplant 316 cyclophosphamide or cell selection in haploidentical alloge-317 318 neic hematopoietic cell transplantation? Hematology. 2024;29 319 (1):2326384.
- 7. Sharma N, Faisal MS, Zhao Q, Jiang J, Elder P, Benson DM, et al. 320 321 Outcomes of bone marrow compared to peripheral blood for 322 haploidentical transplantation. J. Clin. Med. 2021;10(13).

8. Mariotti J, Devillier R, Bramanti S, Giordano L, Sarina B, Furst S, 323 et al. Peripheral blood stem cells versus bone marrow for T cell-replete haploidentical transplantation with post-transplant cyclophosphamide in Hodgkin Lymphoma. Biol. Blood Marrow Transpl. 2019;25(9):1810-7.

324

326

327

332

333

334

335

336

337

339

340

341

342

343

347

348

349

350

352

354

356

359

360

361

362

363

364

365

366

367

369

370

371

373

375

376

377

379

380

383

384

385

386

387

390

- 9. Nagler A, Dholaria B, Labopin M, Savani BN, Angelucci E, 328 Koc Y, et al. Bone marrow versus mobilized peripheral 329 blood stem cell graft in T-cell-replete haploidentical trans- 330 plantation in acute lymphoblastic leukemia. Leukemia. 331 2020;34(10):2766-75.
- 10. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, et al. Peripheral-Blood Stem Cells Versus Bone Marrow From Unrelated Donors, 367. New England Journal of Medicine; 2012. p. 1487-96.
- 11. Arcuri LJ, Hamerschlak N, Rocha V, Bonfim C, Kerbauy MN. Outcomes after haploidentical hematopoietic cell transplantation with post-transplantation cyclophosphamide: a systematic review and meta-analysis comparing myeloablative with reduced-intensity conditioning regimens and bone marrow with peripheral blood stem cell grafts. Trans. Plant Cell Ther. 2021;27(9):782.e1-7.
- 12. Byrne M, Savani BN, Mohty M, Nagler A. Peripheral blood stem 344 cell versus bone marrow transplantation: a perspective from 345 the acute leukemia working party of the European society for 346 blood and marrow transplantation. Exp. Hematol. 2016;44 (7):567-73.
- 13. Harris AC, Young R, Devine S, Hogan WJ, Ayuk F, Bunworasate U, et al. International, multicenter Standardization of Acute graft-versus-Host disease clinical Data collection: a report from the Mount sinai acute GVHD international consortium. Biol. Blood Marrow Transpl. 353 2016:22(1):4-10.
- 14. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, 355 Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with 357 immune effector cells. Biol. Blood Marrow Trans. Plant. 358 2019;25(4):625-38
- 15. Lacan C, Lambert J, Forcade E, Robin M, Chevallier P, Loron S, et al. Bone marrow graft versus peripheral blood graft in haploidentical hematopoietic stem cells transplantation: a retrospective analysis in1344 patients of SFGM-TC registry. J. Hematol. Oncol. 2024;17(1):2.
- 16. Ruggeri A, Labopin M, Bacigalupo A, Gülbas Z, Koc Y, Blaise D, et al. Bone marrow versus mobilized peripheral blood stem cells in haploidentical transplants using posttransplantation cyclophosphamide. Cancer. 2018;124(7):1428-37.
- 17. Arcuri LJ, Hamerschlak N, Rocha V, Bonfim C, Kerbauy MN. Outcomes after haploidentical hematopoietic cell transplantation with post-transplantation cyclophosphamide: a systematic review and meta-analysis comparing myeloablative 372 with reduced-intensity conditioning regimens and bone marrow with peripheral blood stem cell grafts. Transpl Cell Ther. 374 2021;27(9):782.. e1-.e7.
- 18. Bradstock K, Bilmon I, Kwan J, Blyth E, Micklethwaite K, Huang G, et al. Influence of stem cell source on outcomes of allogeneic reduced-intensity conditioning therapy transplants using 378 haploidentical related donors. Biol. Blood Marrow Transpl. 2015;21(9):1641-5.
- 19. Sterling CH, Hughes MS, Tsai HL, Yarkony K, Fuchs EJ, Swinnen LJ, et al. Allogeneic blood or marrow transplantation with 382 post-transplantation cyclophosphamide for peripheral T cell lymphoma: the importance of graft source. Transpl. Cell Ther. 2023;29(4):e1-.e5. 267.
- 20. Santoro N, Ruggeri A, Labopin M, Bacigalupo A, Ciceri F, Gülbaş Z, et al. Unmanipulated haploidentical stem cell transplantation in adults with acute lymphoblastic leukemia: a 388 study on behalf of the acute leukemia working party of the 389 EBMT. J. Hematol. Oncol. 2017;10(1):113.

430

431

432

433

434

435

436

437

438

439

440

441

443

444

445

447

448

449

452

453

454

456

457

460

461

462

- 21. Kato S, Yabe H, Yasui M, Kawa K, Yoshida T, Watanabe A, et al. 391 Allogeneic hematopoietic transplantation of CD34+ selected 392 cells from an HLA haplo-identical related donor. A long-term 393 394 follow-up of 135 patients and a comparison of stem cell source 395 between the bone marrow and the peripheral blood. Bone Marrow Transpl. 2000;26(12):1281-90. 396
- 397 22. Mehta RS, Saliba RM, Alsfeld LC, Jorgensen JL, Wang SA, Anderlini P, et al. Bone marrow versus peripheral blood grafts 398 399 for haploidentical hematopoietic cell transplantation with post-transplantation cyclophosphamide. Transpl. Cell Ther. 400 2021;27(12):e1-.e13. 1003. 401
- 23. Granata A, Fürst S, Bramanti S, Legrand F, Sarina B, Harbi S, 402 403 et al. Peripheral blood stem cell for haploidentical transplan-404 tation with post-transplant high dose cyclophosphamide: detailed analysis of 181 consecutive patients. Bone Marrow 405 Transpl. 2019;54(11):1730-7. 406
- 407 24. Nagler A, Dholaria B, Labopin M, Savani BN, Angelucci E, Koc Y, et al. Bone marrow versus mobilized peripheral blood stem 408 cell graft in T-cell-replete haploidentical transplantation in 409 410 acute lymphoblastic leukemia. Leukemia. 2020;34(10):2766-75.
- 25. Bashey A, Zhang M, McCurdy SR, Ciurea SO, Martin AS, Ana-411 412 setti C, et al. Comparison of peripheral blood stem cells (PBSC) to bone marrow (BM) for T-replete HLA-haploidentical donor 413 414 transplantation using post-transplant cyclophosphamide. Blood. 2016;128(22):683. 415
- 26. Bacigalupo A, Maria Raiola A, Dominietto A, Di Grazia C, Gua-416 landi F, Lint MTV, et al. Graft versus host disease in unmanip-417 ulated haploidentical marrow transplantation with a 418 modified post-transplant cyclophosphamide (PT-CY) regimen: 419 420 an update on 425 patients. Bone Marrow Transpl. 2019;54 421 (Suppl 2):708-12.
- 27. Chen Y, Xu L, Liu D, Liu K, Chen H, Zhang X, et al. Increased 422 423 risk of severe acute graft-versus-host disease in low body mass index patients undergoing haploidentical allogeneic 424 stem cell transplantation]. Zhonghua Nei Ke Za Zhi. 2014;53 425 426 (9):710-4.

- 28. Olsson RF, Logan BR, Chaudhury S, Zhu X, Akpek G, Bolwell BJ, 427 et al. Primary graft failure after myeloablative allogeneic hematopoietic cell transplantation for hematologic malignancies. Leukemia. 2015;29(8):1754-62.
- 29. Ciurea SO, de Lima M, Cano P, Korbling M, Giralt S, Shpall EJ, et al. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation. 2009;88(8):1019-24.
- 30. Yoshihara S, Maruya E, Taniguchi K, Kaida K, Kato R, Inoue T, et al. Risk and prevention of graft failure in patients with preexisting donor-specific HLA antibodies undergoing unmanipulated haploidentical SCT. Bone Marrow Transpl. 2012;47 (4):508-15.
- 31. Shapiro RM, Kim HT, Ansuinelli M, Guleria I, Cutler CS, Koreth J, et al. Cytokine release syndrome in haploidentical stem cell transplant may impact T-cell recovery and relapse. Blood Adv. 2023;7(15):4080-8.
- 32. Abid MB, Hamadani M, Szabo A, Hari PN, Graham MB, Frank MO, et al. Severity of Cytokine release syndrome and its association with infections after T cell-replete haploidentical related donor transplantation. Biol. Blood Marrow Trans. Plant. 2020;26(9):1670-8.
- 33. Imus PH, Blackford AL, Bettinotti M, Luznik L, Fuchs EJ, Huff CA, et al. Severe cytokine release syndrome after haploidentical peripheral blood stem cell transplantation. Biol. Blood Marrow Trans. Plant. 2019;25(12):2431-7.
- 34. Abboud R, Wan F, Mariotti J, Arango M, Castagna L, Romee R, et al. Cytokine release syndrome after haploidentical hematopoietic cell transplantation: an international multicenter analysis. Bone Marrow Transpl. 2021;56(11):2763-70.
- 35. Auletta JJ, Kou J, Chen M, Bolon YT, Broglie L, Bupp C, et al. Real-world data showing trends and outcomes by race and ethnicity in allogeneic hematopoietic cell transplantation: a report from the center for international blood and marrow transplant research. Transpl. Cell Ther. 2023;29(6): e1-.e10. 346.