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A B S T R A C T

Background: Blood component transfusions are a common and often necessary medical

practice during the epidemics of dengue. Transfusions are required for patients when they

developed severe dengue fever or thrombocytopenia of 10£109/L or less. This study there-

fore investigated the risk factors, performance and effectiveness of eight different

machine-learning algorithms to predict blood component transfusion requirements in con-

firmed dengue cases admitted to hospital. The objective was to study the risk factors that

can help to predict blood component transfusion needs.

Methods: Eight predictive models were developed based on retrospective data from a private

group of hospitals in India. A python package SHAP (SHapley Additive exPlanations) was

used to explain the output of the “XGBoost”model.

Results: Sixteen vital variables were finally selected as having the most significant effects on

blood component transfusion prediction. The XGBoost model presented significantly better

predictive performance (area under the curve: 0.793; 95 % confidence interval: 0.699−0.795)

than the other models.

Conclusion: Predictive modelling techniques can be utilized to streamline blood component

preparation procedures and can help in the triage of high-risk patients and readiness of

caregivers to provide blood component transfusions when required. This study demon-

strates the potential of multilayer algorithms to reasonably predict any blood component

transfusion needs which may help healthcare providers make more informed decisions

regarding patient care.
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Introduction

Dengue fever, with an impact on adults, children, and new-

borns, has become the fastest growing mosquito-borne dis-

ease in the world.1 According to an estimation of the World

Health Organization (WHO), nearly 400 million infections

occur in 128 nations in Asia, Oceania, America, and Africa
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annually. Reports suggest dengue transmission is currently a

risk for roughly half of the world’s population.1 Dengue fever

is hyperendemic in India with the epidemiology changing

dramatically over time; the country currently is experiencing

its worst dengue crisis. Fourteen Indian states have notifiable

dengue fever, while 29 states have it as an endemic disease.2

Based on data from the National Vector Borne Disease Control

Programme (NVBDCP)3 and the National Health Profile 2018,4

in 2017, the cases of dengue increased to the highest level in

ten years. The number of cases increased by more than 300

percent from 60,000 in 2009 to 188,401 in 2017. According to

the NVBDCP, there has been a significant increase of more

than 250 % from the 75,808 cases in 2013.3 Certain union terri-

tories and states are experiencing hyperendemic conditions

due to the increase in outbreaks.5 Over 15,000 dengue infec-

tions were confirmed in Delhi in 2015, the worst outbreak

since 2006.6 India estimated an overall cost of US$5.71 billion

for dengue in 2016 as compared to a US$1.51 billion estimate

in 2013.7

Bleeding, the cause of death in many severe dengue fever

cases, is one of the most serious effects of dengue.8 Clinical

signs and symptoms are highly variable; Patients may exhibit

from petechiae or purpura to severe bleeding such as from

the gastrointestinal tract, puncture sites or intracranial hae-

morrhage. There is no known cause for bleeding. These signs

and symptoms are highly variable; a coagulation profile with

abnormalities does not always correlate with the clinical

manifestation of bleeding. Several healthcare professionals

observed that the severity of thrombocytopenia does not reli-

ably predict bleeding.9,10

Blood components are transfused to these patients to pre-

vent bleeding complications. Kaufman et al.11 recommended

transfusing patients with a platelet count of 10£109/L or less

to reduce the chances of spontaneous bleeding. However, the

WHO has issued a set of guidelines regarding the treatment

as there is significant concern about the inappropriate use of

blood components during Dengue infection.12 Furthermore,

the proper identification of patients requiring blood compo-

nent transfusions may help blood suppliers to improve hospi-

tal blood supply.13 By providing too much blood or too little

blood is either costly and unnecessary or it might be danger-

ous to the patient’s health. Therefore, a prediction of blood

component transfusion needs could help blood providers

economize their supply chains.14

Huang et al.15 developed and validated prognostic models

for severe dengue prediction using machine-learning techni-

ques with logistic regression showing the best performance.

Pinto et al.16 conducted a retrospective cohort analysis and

found that age over 55 and specific clinical manifestations,

such as gastrointestinal bleeding, haematuria, and low platelet

count, had a significant impact on death from severe dengue.

Jain et al.17 developed a clinical risk score for predicting mortal-

ity in dengue patients using age, sensorium, and dyspnoea as

significant factors in a prospective observational study.

Several studies 18-22 have used machine-learning techni-

ques to predict blood transfusions for other diseases.

Although many studies have examined factors related to

patient characteristics in order to diagnose dengue, very few

studies21,22 have evaluated multimodel prediction based on

machine learning in large cohorts.

Therefore, this study focuses on applying machine learn-

ing to create a model using a test dataset. Supervised

machine-learning models were employed to analyse the

impact of each variable and a prediction model was devel-

oped to give a reference to facilitate clinical decisions of medi-

cal professionals in relation to blood component transfusions.

Methods

Patient population description

This retrospective multicentric study with one cohort

accessed electronic health records of a network of seven hos-

pitals in India for all confirmed dengue patients (with the

NS-1 antigen test or serologically confirmed dengue infection)

admitted during the study period from February 2012 to

September 2017. All multiday stay inpatients, including emer-

gency and elective, who were at least one year old were

included in the study. A case was excluded if the patient had

a negative result for dengue or serology for febrile illness and

in cases of insufficient data.

The data included the demographic profile of patients,

administrative characteristics, laboratory parameters and

radiological parameters. A total of 1360 patients with disease-

related diagnoses of dengue were admitted to this hospital

network. The study was reviewed and approved by the insti-

tutional healthcare ethics committee. The standardWHO def-

initions were used to classify suspected dengue infection.23

Twomethods were used to confirm infection:

1. An NS-1 antigen test (Panbio Dengue Early ELISA, Standard

Diagnostics Inc., Republic of Korea) was performed if the

patient presented within five days after the onset of the

symptoms.

2. A test for dengue immunoglobulin M (IgM) serum (NIVDEN

Immunoglobulin [IgM] Capture ELISA, National Institute of

Virology, Pune, India) was performed when the patient

presented more than five days after the onset of the symp-

toms.

Data collection

Data for the study was extracted from the hospital digital

information systems. Data was retrieved sequentially, begin-

ning with the demographics of confirmed dengue patients.

Subsequently, diagnostic investigations, administrative and

clinical information was extracted. However, 212 cases were

excluded from the study due to unavailability of complete

datasets.

Initially, based on the aggregate data of discharged dengue

patients, forty candidate risk factors such as age, gender, type

of admission, ventilation assistance, laboratory, and radiolog-

ical characteristics were included. The means, medians, per-

centages, and lower and upper quartiles of the features are

given in Table 1.

The final dataset included 1148 patients for further analy-

sis. Demographic and clinical data were recorded in a tem-

plate pro-forma upon admission, whereas lab related findings
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were collected on daily basis until discharge or death. The

dataset includes features with continuous and categorical

values for demographic, administrative, laboratory, and

radiological data. New fields were created based on existing

features as shown in Table 1 of the Supplementary material.

These features are transformed to binary features to improve

the interpretation.

All the transfused blood components (red blood cells,

plasma, cryoprecipitate, or platelets) were considered based

on the research question and data availability and the need

for any component (binary outcome) was chosen as a classifi-

cation target. The eight state-of-the-art machine-learning

methods Adaboost, ExtraTrees, gradient boosting decision

tree (GDBT), k-nearest neighbour (KNN), logistic regression

(LR), multilayer perceptron (MLP), random forests (RFs), and

extremely gradient boosting (XGBoost) were considered in the

classification of blood component needs (transfusion vs. non-

transfusion).

Data pre-processing

Data cleansing and pre-processing are essential to achieve

optimal results. The following steps were taken to prepare

and clean the data:

1. Redundant records and fields that had more than 50 % of

their data missing were eliminated.

2. Following that, all categorical features were one-hot

encoded. A popular encoding method is one-hot encoding.

It works by making a new variable for each categorical

Table 1 – Characteristics of the study population of 1148 patients comparing the non-transfusion and transfusion groups.

Parameter Overall
(n = 1148)

Non-transfusion
group (n = 873)

Transfusion
group (n = 275)

p-value*

Age Mean (SD) 30.34 (18.33) 28.20 (18.29) 37.14 (16.75) 0.000

LOS Median (Q1-Q3) 4.03 (3.06−5.5) 3.85 (2.9−5.0) 5.1 (4.04−6.88) 0.000

Type of admission Emergency, n (%) 803 (69.9 %) 598 (68.5 %) 205 (74.55 %) 0.067

Direct, n (%) 345 (30.1 %) 275 (31.5 %) 70 (25.45 %) 0.067

ALB (g/dL) Median (Q1-Q3) 3.50 (3.30−3.70) 3.5 (3.5−3.7) 3.5 (2.96−3.5) 0.000

ALT (IU/L) Median (Q1-Q3) 71.00 (47.00−105.63) 71 (43−97) 71 (54.75−14) 0.000

Ventilation assistance n (%) 29 (2.5 %) 5 (0.57 %) 24 (8.73 %) 0.000

AST (IU/L) Median (Q1-Q3) 112.5 (81−156.24) 112.5 (75−142) 117 (102.75−193.25) 0.000

DBil Median (Q1-Q3) 0.2 (0.1−0.2) 0.2 (0.1−0.2) 0.2 (0.2−0.3) 0.000

IDBil Median (Q1-Q3) 0.4 (0.3−0.45) 0.4 (0.3−0.4) 0.4 (0.4−0.54) 0.000

TBil Median (Q1-Q3) 0.6 (0.5−0.63) 0.6 (0.5−0.6) 0.6 (0.6−0.9) 0.000

Creatinine (mg/dL) Median (Q1-Q3) 0.7 (0.61−0.78) 0.7 (0.6−0.75) 0.7 (0.65−0.85) 0.000

Eosinophils (%) Median (Q1-Q3) 1.73 (1−2.33) 1.73 (1−2.33) 1.73 (1−2.21) 0.040

Gender Male, n (%) 692 (60 %) 518 (59.34 %) 174 (63.27 %) 0.245

Female, n(%) 456 (39.72 %) 355 (40.66 %) 101 (36.73 %) 0.245

GGT Median (Q1-Q3) 70 (55−88) 70 (50−71) 70 (70−135.63) 0.000

GLB Median (Q1-Q3) 2.9 (2.8−3) 2.9 (2.8−3) 2.9 (2.6−2.95) 0.001

Hct (%) Mean (SD) 39.39 (5.47) 39.36 (5.09) 39.49 (6.54) 0.730

Hb (g/dL) Mean (SD) 13.10 (1.88) 13.09 (1.74) 13.15 (2.26) 0.641

Lymphocytes (%) Median (Q1-Q3) 39.33 (32−46) 39.33 (33.5−47.03) 36.5 (27.635−42.3) 0.000

MCH Median (Q1-Q3) 28.55 (27.15−29.79) 28.55 (26.98−29.6) 28.78 (27.765−30.49) 0.000

MCHC Median (Q1-Q3) 33.18 (32.63−33.64) 33.18 (32.65−33.62) 33.18 (32.54−33.7) 0.212

MCV Median (Q1-Q3) 86.1 (82.32−89.26) 86.1 (81.73−88.75) 86.81 (84.24−91.51) 0.000

Monocytes Median (Q1-Q3) 6 (4.8−7) 6 (5−7.28) 5.78 (4.24−6.8) 0.000

Neutrophils (%) Mean (SD) 51.91 (13.68) 50.81 (13.52) 55.38 (13.63) 0.000

PLT (x109/L) Median (Q1-Q3) 102.69 (68.21−153.44) 122.5 (84.38−160.73) 59.88 (47.43−82.1) 0.000

Thrombocytopenia n (%) 556 (48.43 %) 319 (36.54 %) 237 (86.18 %) 0.000

Potassium Median (Q1-Q3) 4.1 (4−4.3) 4.1 (4−4.3) 4.1 (3.8−4.2) 0.000

Radiological Findings Bilateral effusion 99 (8.62 %) 54 (6.19 %) 45 (16.36 %) 0.000

Right effusion 243 (21.17 %) 138 (15.81 %) 105 (38.18 %) 0.000

Left effusion 112 (9.76 %) 64 (7.33 %) 48 (17.45 %) 0.000

RBC Count (x1012/L) Median (Q1-Q3) 4.67 (4.3−5.04) 4.67 (4.36−5.01) 4.67 (4.13−5.09) 0.056

RDW (%) Median (Q1-Q3) 13.8 (13.10−14.6) 13.8 (13.1, 14.54) 13.8 (13.08−14.9) 0.053

Sodium Median (Q1-Q3) 135.9 (134−137) 135.9 (134−137) 135.9 (133.92−137.45) 0.496

TLC(x109/L) Median (Q1-Q3) 5.45 (4.345−7.15) 5.45 (4.3−6.87) 5.45 (4.51, 7.95) 0.004

TP Median (Q1-Q3) 6.45 (6.3−6.6) 6.45 (6.45−6.7) 6.45 (5.8, 6.45) 0.000

WBC Median (Q1-Q3) 12 (12−12) 12 (12−12) 12 (12−19.5) 0.082

ALB: albumin; ALT: alanine aminotransferase; AST: aspartate aminotransferase; DBil: direct bilirubin; GLB: globulin; Hb: haemoglobin; Hct: hae-

matocrit; IDBil: indirect bilirubin; PLT: platelet; RBC: red blood cell count; RDW: red cell distribution width; TLC: total leucocyte count; TP: total

protein; TBil: total bilirubin. Categorical variables are summarized as n (%), Continuous variables are presented as mean § SD or median (range)

if SD>50 % of the mean.

* Pearson chi-square/Fisher exact test applied.
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variable present in the feature by assigning a 1 or 0 to indi-

cate the presence or absence of the category in the data.

3. The final data set had 389 columns.

4. Missing values in patient data are quite common in medi-

cal environments. Details for missing data handling are

discussed in a later section.

Feature engineering

Feature engineering is an important task in data preparation,

but it is also a time-consuming component of machine-learn-

ing applications.24 Initially, Forty predictors were collected

using the aggregate data of discharged patients, which

included demographics, administrative, lab test results, and

radiology related variables and subsequently new features

were derived from these variables. The institution’s standard

lab reference ranges were used for laboratory data with fea-

tures being coded based on whether they were below, within

or above the reference range (Supplementarymaterial Table 1)

and other features were categorized into binary variables. Fol-

lowing the feature engineering process; one dependant and

389 independent features were identified. Supplementary

material Table 1 presents a summary of the feature engineer-

ing techniques.

Missing value handling

The techniques used by Ansari et al.25, Hachesu, et al.26 and

Azari, et al.27 were used to handle missing values in this

study. Features with more than 50 % of records of missing val-

ues were removed from the dataset; commonly these

included prothrombin time, activated partial thromboplastin

time, and basophil count (Table 1). The mean or median was

used for continuous features and regression was used for

nominal or ordinal type features with missing values below

50 %.

Feature selection

Variables for the blood component transfusion prediction

model were selected following reviews of previous research

on predicting and/or administering transfusion to dengue

patients.21,22 Subsequently, these variables were reviewed by

experts to ensure that relevant variables were being used as

predictors. The voted method was used for feature selection

(for details see Supplementary material) to select significant

variables. This method applies a variety of techniques to

select features. A vote is given when an algorithm selects a

feature. In the end, this method calculates the total votes for

each feature and then picks out the best ones based on votes

with the selected feature being used to develop the machine-

learning models.

Training and test data sets

After cleansing and pre-processing, 1148 complete records

were extracted and obtained for classification tasks. A crucial

step in assessing the effectiveness of data mining models is

dividing the data into training and testing sets. In this study,

the dataset was randomly split into training and testing data-

sets. Seventy percent of the data was used to train our mod-

els, while 30 % was used as a testing set. Five-fold cross

validation was performed on the training set to tune the

hyperparameter of the models. In the training set, 23.4 %

patients received blood component transfusions during their

hospital stay and in the testing set, 25.2 % patients received

blood component transfusions.

Binary classification models

AdaBoost28 is a machine-learning approach based on the idea

of combining many relatively weak and inaccurate prediction

rules to create a highly accurate prediction rule. AdaBoost,

like all ensemble methods, works by generating a set of classi-

fiers and then voting on them to classify test examples. The

ExtraTrees algorithm29 is a supervised learning method for

classification that works by training a number of randomized

decision trees (also known as extra-trees) on different sub-

samples of the data and then averaging them to enhance the

predictive accuracy and control over-fitting. The GBDT

algorithm30,31 is a popular machine-learning technique that

involves implementing several models and aggregating their

results. The KNN32 algorithm is a simple non-parametric,

supervised machine-learning technique. It stores all the

available data and a new data point is classified by searching

for the K most similar data points (the neighbours) across the

entire training dataset and then these K data points are sum-

marized as the outcome variable. LR33 is a nonlinear regres-

sion model, where the target variable is binary. It solves

binary classification problems by utilizing a linear combina-

tion of input data. Additionally it can predict the probability

value between 0 and 1 of an event by fitting data objects in a

logistic function. MLP34 is the classical type of neural network

algorithm comprising of one or more layers of neurons. It is

often applied to supervised learning problems: it learns to

model the correlation between inputs and outputs by training

on a set of input-output pairs. Training of the model involves

adjusting the parameters, or the weights and biases, in order

to minimize error. RF35 is an ensemble of multiple decision

trees. Each non-leaf node in a decision tree represents a test

on a feature, each branch denotes a test output, and each leaf

node holds an outcome label. Not only is RF fast, easy to

implement, and produces precise predictions, but it can also

manage a large number of independent variables without

overfitting.36 XGBoost37 is a widely used and highly effective

decision-tree-based ensemble machine-learning algorithm

that employs a gradient boosting framework. It implements

several models and aggregates the results.

Evaluation measures

The dataset was randomly split into two groups, a training

and a testing set. The training set of 803 (70 %) patients was

used to create the models, while the testing set of 345 (30 %)

patients was used to test the models. The bootstrap method

was applied 1000 times to the internal validation set in order

to determine the confidence interval (CI) for the area under

the curve (AUC), accuracy, sensitivity, specificity, positive

(PPV) and negative (NPV) predictive values, and F1-score.
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Discrimination was evaluated using area under the receiver

operating characteristic curve (AUROC)38 of predicted proba-

bilities in dengue patients for both transfusion and non-

transfusion groups. The calibration of the predictive model

was assessed using a calibration curve.

In the initial data analysis, independent continuous varia-

bles between transfused and non-transfused groups were

compared either using the Student t-test or Mann-Whitney U

test as considered suitable. Either chi-square test or Fisher’s

exact test was used to examine associations between the cat-

egorical variables.

The proposed prediction model was developed based on

the most important features in the “XGBoost” package in

Python language. The parameter values of the models were

automatically adjusted. The performances of eight models

were compared to select the best model. Five-fold cross-vali-

dation was used to train and tune the hyperparameter of the

model. Specifically, the training set was split into five data

sets, four data sets were used to train the model, and the

remaining set was utilized to evaluate the performance/gen-

eralizability of the model.

The performance of each model was assessed using a set

of performance metrics such as AUC, accuracy, sensitivity,

precision, PPV and NPV. The decision threshold value was set

to maximize the AUC value which was selected here due to

its robustness to outcome class imbalance (if all patients

were assigned to the larger class, the accuracy would be quite

high but the sensitivity would be very low). A confusion

matrix was used to compute the PPV or precision, sensitivity

or recall specificity, and NPV, The F1 score and accuracy are

shown in Eqs. (1)-(6).

PPV ¼

P
TP

P
TP þ

P
FP

ð1Þ

NPV ¼

P
TN

P
TN þ

P
FN

ð2Þ

Sensitivity ¼

P
TP

P
TP þ

P
FN

ð3Þ

Specificity ¼

P
TN

P
TN þ

P
FP

ð4Þ

F1� score ¼
2 � precision � recall

precision þ recall
ð5Þ

Accuracy ¼
TP þ TN

TP þ FP þ FN þ TN
ð6Þ

Moreover, the area under the AUROC was plotted as a

measure of the model performance, with larger AUCs indicat-

ing better performance. After the model was developed, the

Shapley Additive exPlanations (SHAP) package was used to

explain an instance prediction by computing the importance

of each feature in the model prediction. The SHAP package

interpreted the output of the machine-learning model using a

coalitional game-theoretic approach.39

Results

Baseline characteristics of the patients

As shown in Figure 1, final enrolment in the study included

1148 patients; information on the cohort is shown in Table 1.

The mean age of the patients was 30.34 years; 60.3 % of them

were men. The mean ages of the non-transfusion and trans-

fusion group patients were 28.20 (SD: § 18.29) and 37.14 (SD: §

16.75) years, respectively. The transfusion group patients

were statistically significantly older than those of the non-

transfusion group (p-value <0.01). Patients in the transfusion

group had significantly longer hospital stays (5.1 days; inter-

quartile range [IQR]: 4.04−6.88; p-value: <0.01) than those in

the non-transfusion group (3.85 days; IQR: 2.9−5.0). The 10- to

20-year age group, with a male predominance, had the high-

est proportion of dengue cases (21.1 %) followed by the 20- to

30-year age group (19.4 %) and the 30- to 40-year age group

(19.2 %). The over 70-year-old age group had the fewest cases.

Blood component transfusions were given in 24 % (275/1148)

of patients, while 76 % (873/1148) of the patients received no

blood component transfusions. Table 1 compares the

Figure 1 – .Modelling process andmethodology flow of the study. (A) Data was acquired from an electronic health records of a

network of hospitals; the included features were demographic, administrative, radiological, and lab related parameters. After

feature engineering, 389 features were itemized and 16 features were screened thus 16 features were used to develop the

model. (B) Themethodology flow of the study.
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characteristics of patients who received blood component

transfusions versus those who did not.

Amongst all confirmed dengue cases, three patients

(0.26 %) had platelet counts ≤ 20,000 (severe thrombocytope-

nia), 114 patients (9.93 %) had moderate thrombocytopenia

(range: 20,000−50,000), 439 patients (38.24 %) had mild throm-

bocytopenia (range: 50,000−1,000,000) while the remaining

592 patients (51.57 %) had values equal to or more than

1000,000 (Figure 1 of the Supplementary material). Thrombo-

cytopenia had a significant association with blood component

transfusion (p-value <0.05).

Model validation performance

Sixteen features were selected using the voting method (for

details see Supplementary material) and used in each classi-

fier to predict blood component transfusion during hospital

stay. In the validation set, XGBoost and the random forest

model achieved the same AUC (0.793) with the KNN classifier

had the lowest AUC (0.703) (Figure 2). The XGBoost model sig-

nificantly outperformed the seven other machine-learning

models. The relatively balanced sensitivity, specificity, PPV,

NPV and F1-score of the XGBoost model were 0.632, 0.953,

0.821, 0.885, and 0.714, respectively (Table 2). Confusion

matrices, ROC curve, and the Precision-Recall curve for all the

models are available in Figures 5-9 of the Supplementary

material. Figure 3 shows the calibration plot for the prediction

of blood component transfusion needs amongst the cases

using the XGBoost model.

Significant features evaluated by mean SHAP values

Of the 345 patients in the validation set, 301 patients were

correctly classified. The SHAP summary plot demonstrated

that severe thrombocytopenia, abdominal free fluid, longer

hospital stays, lower sodium, and lower albumin ranked as

the five most important features (Figure 4). This plot also

revealed that severe thrombocytopenia, abdominal free

fluid, longer hospital stays, lower sodium, and lower albu-

min were linked with higher SHAP value outputs in the

XGBoost model indicating more likely to receive blood com-

ponent transfusions (Figure 4). The SHAP summary plot of

the random forest, GBDT, and ExtraTrees models also dem-

onstrated that severe thrombocytopenia, abdominal free

fluid, and longer length of hospital stay ranked amongst the

three most important features, respectively (Supplementary

material Figures 2-4).

Five examples of correctly classified cases (# 246, 261, 264,

268 and 297) are demonstrated as SHAP force and decision

plots in Figure 5. The primary contributing variables for an

individual’s final model output are mostly shown in the force

plot. The bars represent the SHAP value. The colours of the

bars depict the consequence of the SHAP value (Positive or

Negative). The prediction value is highlighted in black. The

line graph shows the baseline. The instance value is also

shown for each patient. The SHAP decision plots represent

the decision path for every feature. The units shown on the x-

axis are probabilities. The importance of each feature is listed

in descending order. Each line on the plot strikes the x-axis at

Figure 2 –ROC curves for the ML (XGBoost, GBDT, KNN, MLP, LR, and RF) models.
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the predicted value of its corresponding observation. This

shows how each feature contributes to the overall prediction.

Discussion

Dengue epidemics, which happen every two to three years in

South East Asia, are a significant public health issue. The

majority of the diagnoses are based on clinical symptoms and

are backed by laboratory tests, such as the NS-1 antigen test

and IgM antibodies against the virus, which show infection.

This study found that the highest number of dengue patients

were in the 10- to 20-year age group (21.1 %), with a male pre-

dominance. The current study also observed that 24 % of the

patients required blood component transfusions and throm-

bocytopenia was present in 48.43 % of the patients which is in

agreement with other studies carried out in India.40

This study used machine-learning techniques in a novel

way to predict blood component transfusion needs in dengue

patients during their hospital stay. The XGBoost model was

found to predict blood component transfusion needs with

reasonable accuracy better than the other models constructed

in this study. The model had excellent discrimination during

internal validation and showed satisfactory sensitivity and

specificity. Therefore, the hypothesis proposed in this study

was supported by the outcomes of the model.

Prediction of tasks in many facets of daily life could be rev-

olutionised by modern machine-learning techniques, particu-

larly in medicine.41 In contrast to a few years ago, when linear

modelling tasks could only be completed with the aid of linear

regression models, many nonlinear interactions may now be

accurately characterised using contemporary machine-learn-

ing techniques, for example, using support vector machine,

decision trees or neural networks. The accuracy of thesemod-

ern techniques greatly beats the traditional method only if

Table 2 – Performance metrics and 95 % confidence intervals of all the predicting models in the internal validation set with
the 16 most important features.

Methods AUC Accuracy Sensitivity Specificity PPV NPV F1-score

XGBoost 0.793

(0.699−0.795)

0.872

(0.806−0.873)

0.632

(0.471−0.676)

0.953

(0.884−0.956)

0.821

(0.590−0.822)

0.885

(0.837−0.907)

0.714

(0.549−0.715)

Random Forest 0.793 0.861 0.655 0.93 0.76 0.889 0.704

(0.703−0.801) (0.812−0.878) (0.471−0.675) (0.896−0.962) (0.615−0.828) (0.835−0.909) (0.556−0.711)

MLP 0.789 0.867 0.632 0.946 0.797 0.884 0.705

(0.596−0.789) (0.771−0.868) (0.238−0.671) (0.868−0.969) (0.542−0.804) (0.791−0.904) (0.348−0.706)

LR 0.787 0.887 0.586 0.988 0.944 0.876 0.723

(0.702−0.795) (0.829−0.887) (0.438−0.631) (0.938−0.989) (0.717−0.945) (0.834−0.900) (0.567−0.724)

AdaBoost 0.78 0.881 0.575 0.984 0.926 0.873 0.709

(0.702−0.800) (0.823−0.887) (0.453−0.646) (0.928−0.985) (0.690−0.927) (0.833−0.903) (0.563−0.723)

GBDT 0.78 0.875 0.586 0.973 0.879 0.875 0.703

(0.702−0.794) (0.823−0.884) (0.447−0.632) (0.922−0.977) (0.672−0.889) (0.835−0.902) (0.562−0.712)

ExtraTrees 0.777 0.849 0.632 0.922 0.733 0.881 0.679

(0.695−0.791) (0.806−0.870) (0.467−0.658) (0.888−0.954) (0.592−0.807) (0.83−0.904) (0.545−0.697)

KNN 0.703 0.829 0.448 0.957 0.78 0.837 0.569

(0.631−0.731) (0.786−0.852) (0.313−0.524) (0.915−0.976) (0.600−0.844) (0.798−0.876) (0.426−0.610)

Each model’s performance was tested using 345 records, which makes up 30 % of the data set (n = 1148).

Figure 3 –Calibration plot of internal validation set for the XGBoost model. The predicted probability of blood component trans-

fusion cases is compared to the actual proportion of blood component transfusion cases amongst subjects in the 30 % holdout

set. Perfect predictive calibration ability is represented by the dashed diagonal line.
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the underlying data cannot be described linearly.42 In our data

set, the LR model has already produced pleasantly surprising

outcomes for the task of comparing blood component trans-

fusion needs vs. non-transfusion.

In this study, a machine-learning model was developed to

predict blood component transfusion needs of dengue

patients, which could help clinicians to identify high-risk

patients. If the model predicts patients at low probability for

requiring transfusions, unnecessary blood collection and

stocking can be reduced. Similarly, for patients with high risk

of transfusion, blood bank stock management can be stream-

lined. An early prediction of risk for transfusion would allow

the care provider team to take preventive actions to better

manage patient care as per the risk profile.

XGBoost has the best prediction performance based on the

outcome parameters, which is reflected by the high AUC, the

reasonable sensitivity, specificity values and F1-score. This

makes XGBoost useful in our clinical setting, although it must

be stated that the other models were only marginally worse

and that there is no clear winner amongst the different

machine-learning models.

This study is significant since it merged dengue-related

characteristic data with haemoglobin to create a prediction

model. Longer hospital stays, lower haemoglobin levels,

severe thrombocytopenia, higher total leucocyte count, lower

potassium levels, lower globulin levels, lower albumin levels,

higher total bilirubin, lower lymphocyte counts, abdominal

free fluid, lower monocyte counts, lower sodium levels,

higher creatinine levels, left effusion, lower mean corpuscular

volume, and higher haematocrit levels were selected as sig-

nificant variables. Moreover, their correlation with blood com-

ponent transfusion needs was demonstrated in the SHAP

summary plot. The SHAP force and decision plots were used

to show how complex models arrive at their predictions.

Model validation is a crucial task in the field of medical

research to ensure that machine-learning models are reliable

and accurate in predicting patient outcomes. This study used

test data to validate eight machine-learning methods includ-

ing Adaboost, ExtraTrees, GBDT, KNN, LR, MLP, RF, and

XGBoost and 5-fold cross-validation to train and tune the

hyperparameter of the models.43-45 Several studies have

reported successful applications of these ML methods in

respect to blood component transfusions.18-20,46 The XGBoost

model was used to classify blood component transfusion

requirements.46,47

There were several limitations to this study. First, the gold

standard for blood component transfusion in dengue patients

was the doctor’s clinical judgement and over-transfusion can

be a problem in such a scenario. Second, the hospitals in the

network where the data was collected are probably generaliz-

able to a specific model. However, the data acquired is not

clinically exhaustive, as the current study relied completely

on the demographic, administrative, laboratory, and radiolog-

ical-related characteristic data accessed from the electronic

health records of the hospital network. With different popula-

tions and practise patterns, it might not be easily generaliz-

able to other regions and so the process outlined here may

need to be used independently for the model’s development

or revalidation in each community. Third, a 7:3 ratio was used

to divide the training and testing sets, therefore using alterna-

tive external testing sets might produce different results;

external data validation may be needed before the generaliza-

tion of the model. Lastly, even though SHAP values were

employed to aid in the understanding of our machine-

Figure 4 –SHAP analysis of the test set using the XGBoost model. Each circular dot represents one patient. Features are listed

on the y-axis in rank order with the uppermost being the highest contributor to the prediction model and the lowermost being

the lowest contributor. The x-axis shows the range of SHAP values, a value of zero represents no contribution. Transfusion

risk is encoded by its horizontal coordinates, where positive values indicate higher transfusion risks and negative values indi-

cate lower transfusion risks.
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Figure 5 –A: SHAP force plot for five patients (#: 246, 261, 264, 268 and 297). Features in pink tend to push the probability of

need of blood component transfusion to the right, while features in green tend to push it to the left. Doctors can use this plot to

easily identify the most important features with high decision power at the individual level. B: SHAP decision plot for the same

five patients. This provides a better visualization of how all predictors affect each decision in terms of their importance. The

decision path changes direction drastically with the highly important features and achieves an estimated probability of blood

component transfusion needs. An individual physician can choose whether or not to trust the output based on how the fea-

tures affect the direction.
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learning model, the medical world still requires a more inter-

pretable model.48

Conclusion

A long-standing issue in medicine is the discovery of the fac-

tors that influence blood component transfusions needs in

dengue patients; statistical models are frequently employed

in the literature. In this study, a reliable machine-learning

algorithm was used to develop an expedient blood compo-

nent transfusion prediction model during the hospitalization

of dengue patients with a good performance. XGBoost had

the best fit with an AUC of 0.793 (95 % CI: 0.699−0.795) and cor-

responding specificity of 0.953 and sensitivity of 0.632,

although it should be noted that the other models were only

marginally worse. This study recommends the use of this

model to predict blood component transfusions during the

hospital stay to help care providers to take appropriate pre-

ventive measures for high-risk patients. Machine-learning

models should be developed based on the characteristics of

dengue patients and the models should be validated with

more data in the future. Finally, a follow-up study should be

carried out to assess the impact of predictive models on clini-

cian behaviour, healthcare utilization, patient outcomes, and

to support the decisions of clinicians.
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