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A B S T A T C T

Introduction: Immune checkpoints are regulators of the immune system response that allow

self-tolerance. Molecules such as Programmed Cell Death Protein 1 (PD-1) and its Ligand (PD-L1)

participate in the immune checkpoint by signaling co-inhibition of lymphocyte responses. In

cancers, PD-L1 expression is associated with the immune evasion mechanism, which favors

tumor growth. The use of anti-PD-1/PD-L1 drugs is already well described in solid tumors, but

still not fully understood in hematologic malignancies. Myelodysplastic neoplasms (MDSs) are

heterogeneous bone marrow disorders with an increased risk of progression to Acute Myeloid

Leukemia (AML). The MDS affects hematopoietic stem cells and its pathogenesis is linked to

genetic and epigenetic defects, in addition to immune dysregulation. The influence of the PD-L1

on theMDS remains unknown.

Methods: In this study, we evaluated the mRNA expression of the PD-L1 in 53 patients with

MDS, classified according to theWHO 2016 Classification.

Results: Patients with dyserythropoiesis presented significantly higher PD-L1 expression than

patients without dyserythropoiesis (p = 0.050). Patients classified as having MDS with an excess

of blasts 2 (MDS-EB2) presented a significant upregulation in themRNA expression of the PD-L1

compared to theMDSwith an excess of blasts 1 (MDS-EB1) (p = 0.050). Furthermore, we detected

three patients with very high levels of PD-L1 expression, being statistically classified as outliers.

Conclusion: We suggested that the high expression of the PD-L1 is associated with a worse

prognosis in the MDS and functional studies are necessary to evaluate the possible use of

anti-PD-L1 therapies for high-risk MDS, such as the MDS-EBs.

� 2023 Published by Elsevier España, S.L.U. on behalf of Associação Brasileira de Hematolo-

gia, Hemoterapia e Terapia Celular. This is an open access article under the CC BY-NC-ND
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Introduction

Myelodysplastic neoplasms (MDSs) are bone marrow cancers

with significantly heterogeneous characteristics, accompa-

nied by an increased risk of progression to acute myeloid

leukemia (AML).1 The MDS pathogenesis is associated with

genetic and epigenetic defects and immune dysregulation.2,3

The overexpression of immune-related genes in the MDS

was linked to its pathogenesis in more than 50% of patients.4

Recent findings showed the role of immune alterations in the

MDS, where immunological mechanisms can modulate the

environment by favoring the expansion of malignant clones.5

The innate and adaptive immune systems are active in the

MDS niche and participate in the abnormal hematopoiesis

mechanisms. The immune system and the immune evasion

mechanism can act in the cell death, proliferation, or sup-

pression of hematopoiesis.6

The immune evasion occurs by the expressing of immune

checkpoint molecules, such as the Protein Death 1 (PD-1) and

Protein Death Ligand 1 (PD-L1). These molecules participate

in the co-inhibition signaling of lymphocyte responses, pre-

venting the cell death. Furthermore, the induction of the PD-

L1 expression in tumor cells occurs in response to specific

cytokines, such as the tumor necrosis factor alpha (TNF-a)

and interferon gamma (IFN-g).7 The immunotherapy with

checkpoint inhibitors is already performed in several cancers,

but the treatment success depends on the type of tumor and

the patient’s immune system.8−10

In this context, the measurement of PD-L1 expression lev-

els emerged as a possible biomarker to screen patients more

susceptible to anti-PD-L1 drugs.11,12 In the MDS, studies

reported contradictory findings and the role of the PD-L1 in

the development and progression of the disease remains to

be elucidated.13,14 We aimed to evaluate if the PD-L1 gene

expression would be linked to clinical and prognostic features

of patients with myelodysplastic neoplasms.

Material andmethods

Patients and methods

Fifty-three patients with MDS were diagnosed at the Federal

University of Cear�a (UFC)/Center for Research and Drug Devel-

opment (NPDM), according to the WHO 2016 Classification.

Primary MDS patients were evaluated according to the

Revised International Prognostic Scoring System (IPSS-R)

(Table 1). Four bone marrow samples from healthy volunteers

were used as the control group. This study was approved

by the Ethics Committee of the UFC under number

69366217.6.0000.5054 and informed consent was obtained

from all patients and controls.

Cytogenetic analysis

The conventional G-banding karyotyping was performed on

mononuclear bone marrow cells in all cases. Briefly, cultures

were established in the Roswell Park Memorial Institute RPMI

1640 medium (Gibco, Grand Island, NY, USA), containing 20%

fetal calf serum. After a 24-h. incubation, colcemid was added

to the cell culture to block the mitotic fuse (final concentra-

tion 0.05 mg/mL). After harvesting, the cells were exposed to a

hypotonic KCl solution (0.068 mol/L) and fixed with the Car-

noy’s solution (acetic acid/methanol in a 1:3 proportion).

Slides were prepared and submitted to G-banding. Whenever

possible, at least 20 metaphases were analyzed using the

CytoVision Automated Karyotyping System (Applied Imaging,

San Jose, CA, USA) and described according to the Interna-

tional System for Human Cytogenetic Nomenclature 2016.

Total RNA extraction

The bone marrow mononuclear cells were separated after the

lysis of red cells. Total RNA extractions from isolated

mononuclear cells were performed with the TRIzol ReagentTM

(Invitrogen, Carlsbad, CA, USA). The cDNA synthesis from the

total RNA was performed with the High-Capacity cDNA

Reverse Transcription kit (Applied Biosystems, San Jose,

California, USA), according to the manufacturer’s protocol.

The cDNA samples were stored at �20 °C until further use.

Quantitative real‑time PCR

Quantitative real-time PCR (qPCR) reactions were based on

the TaqMan� methodology (Applied Biosystems, Carlsbad,

CA, USA) and performed on a 7500 Fast System� (Applied

Biosystems, Carlsbad, CA, USA). Pre-developed TaqMan gene

expression assays for the PD-L1 (Hs00204257_m1), as well as

the TaqMan Universal Master Mix II with UNG� (Applied

Biosystems, Carlsbad, CA, USA), were used to quantify the

mRNA expression. For each sample, the expression of target

genes was normalized to the reference genes glyceraldehyde

3-phosphate dehydrogenase (GAPDH) and ubiquitin C (UBC).

The reference genes were chosen according to a previously

describedmethod.15 Each sample was performed in duplicate.

The expression ratios were calculated using the 2�DCq

method16 from the Cq values provided by the 7500 Fast Real-

Time PCR System software (Applied Biosystems, Inc., Foster

City, CA, USA).

Statistical analysis

The data on the relative mRNA expression (DCq

values � quantitative cycle) were expressed as mean/median

and range (maximum and minimum) to determine the possi-

ble association between gene expressions and the variables.

The normality was evaluated by the Shapiro−Wilk test, and

the outliers were removed. When the normality was detected,

the Student’s t-test or one-way ANOVA with the Tukey/

Games Howell post hoc test was used. The homogeneity of

variance analysis for all variables was evaluated by the Lev-

ene’s test. The variables that did not have a normal distribu-

tion were analyzed using the following nonparametric tests:

the Mann−Whitney for the comparison of the median

between two groups and the Kruskal-Wallis to compare the
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Table 1 – Clinical and laboratory characteristics of MDS patients.

Case Gender Age Karyotype WHO IPSS-R

1 F 65 46,XX [20] MDS-MLD Intermediate

2 M 62 47,XY,+8 [6]/47,XY,del (7)(q32),+8 [7]/46,XY [2] MDS-EB-2 High

3 M 73 NOMETAPHASE MDS-EB-2 −

4 M 66 NOMETAPHASE MDS-EB-1 −

5 M 49 47,XY,+mar [6]/48,XY,+8,del (16)(?q22),+mar [4]/47»50,XY,del (4)(?q35),+8,+10,+11,del (16)

(?q22),+21,+mar [cp8]

MDS-MLD Very High

6 F 57 46,XX [8] MDS-MLD Low

7 M 58 46,XY, del (5)(?q15q33) [8]/46,XY [12] MDS-RS Low

8 F 28 46,XX [20] MDS-RS Low

9 M 82 46,XY,del (5)(?q22q33) [3]/45,XY,del (5)(?q22q33),�18 [3]/46,XY [14] MDS-RS Low

10 M 77 46,XY,add (13)(p11) [12]/46,XY,del (7)(q32),add (13)(p11) [4]/48,XY,add (13)(p11),+22,+mar

[9]/48,XY,del (7)(q32),add (13)(p11),+22,+mar [3]/46,XY [2]

MDS-MLD Very high

11 F 41 46,XX,del (5)(q15q33) [9]/46,XX,del (5)(q15q33),del (11)(?q25) [7]/46,XX [4] MDS-MLD Low

12 M 64 37,X,�2,�3,�9,�11,�12,�15,�16,�18,-Y [8]/46,XY,del (5)(q15q33) [5]/46,XY [6] MDS-EB-2 Very high

13 F 82 46,XX [5] MDS-RS Low

14 M 74 46,XY [6] MDS-RS Low

15 M 87 46,XY [6] MDS-SLD Low

16 F 57 46,XX del (11)(q23) [11]/46,XX − −

17 M 82 NOMETAPHASE MDS-MLD −

18 F 87 NOMETAPHASE MDS-RS −

19 F 84 NOMETAPHASE MDS-RS −

20 F 51 46,XX [11] MDS-RS Very low

21 F 72 − MDS-EB-2 −

22 F 45 NOMETAPHASE − −

23 F 72 46,XX [6] MDS-SLD Very low

24 M 73 80»90<3n>XXYY,. . . [3]/46,XY,del (5)(q32),del (11)(q32),del (17)(p11.2) [7]/46,XX [11] MDS-EB-1 High

25 M 74 46,XY [3] MDS-MLD Very low

26 M 52 46,XY [20] MDS-MLD Low

27 M 74 46,XY del (11)(q23) [7]/46,XY [13] MDS-SLD Very low

28 M 31 46,XY [24] MDS-SLD Low

29 M 85 46,XY [15] MDS-RS Low

30 M 85 47,XY,+8 [12]/46,XY [8] MDS-EB-1 Intermediate

31 M 85 46,XY [20] MDS-EB-1 Intermediate

32 M 62 47,XY,+15 [10]/46,XY [10] MDS-RS Intermediate

33 F 77 46,XX [20] MDS-MLD Low

34 F 75 NOMETAPHASE MDS-EB-1 −

35 F 44 46,XX [20] MDS-EB-2 Very high

36 F 45 46,XX [7] MDS-SLD Very low

37 M 79 46,XY [7] MDS-MLD Very low

38 M 84 NOMETAPHASE MDS-EB-1 −

39 F 78 46,XX,del (5)(q12q33) [18]/46,XX [2] MDS-SLD Very Low

40 M 59 NOMETAPHASE MDS-MLD −

41 F 65 NOMETAPHASE MDS-MLD −

42 F 77 46,XX,del (7)(q32) [2]/46,XX [26] MDS-SLD High

43 F 76 46,XX [15] MDS-RS Low

44 M 76 NOMETAPHASE MDS-MLD −

45 M 69 46XY [10] MDS-MLD Very low

46 F 85 46XX [20] MDS-RS Intermediate

47 M 56 46,XY,del (5)(q32) [3]/46,XY,del (5)(q32),del (7)(q36) [3]/46,XY,�5,+mar [9]/46,XY [7] MDS-EB-1 Very high

48 M 55 45,X,-Y [15]/45,X,-Y,del (5)(q32) [3]/46,XY [2] MDS-EB-2 Intermediate

49 M 75 92,XXYY [4] MDS-EB-1 High

50 F 80 46,XY [20] MDS-SLD Very low

51 M 55 45,XY,�7 [15]/46,XY,�7,+mar [5] MDS-EB-2 Very high

52 M 89 46,XY,t (5;6)(q13.2;q13.4) [3]/46,XY,t (5;9)(q13.2;q13.4),t (8;20)(q21.3;q22.12) [3]/46,Y,del(X)

(q21),t (5;6)(q13.2;q13.4),t (8;20)(q21.3;q22.12) [5]/46,XY [9]

MDS-EB-2 Very high

53 M 84 46,XY [20] MDS-EB-1 High

Abbreviations: M, Male; F, Female; WHO, World Health Organization; MDS-SLD, MDS with single lineage dysplasia; MDS-MLD, MDS with multili-

neage dysplasia; MDS-RS, MDS with ring sideroblasts; MDS-EB, MDS with excess blasts; IPSS-R, Revised International Prognosis Score System.
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median in variables with three or more groups. The survival

analysis was performed by the Kaplan-Meier method,17 using

the Long Rank test as a post-test. The statistical analysis was

performed using the software SPSS 21.0 (SPSS Inc., Chicago,

IL, USA) and GraphPad Prism 8 (GraphPad Prism software, La

Jolla, CA, USA). The probability level p-value < 0.05 was

adopted.

Results

Patients

All 53 patients were diagnosed according to the 2016 WHO

Classification (eight cases with single lineage dysplasia-

MDS-SLD, 12 MDS with ring sideroblasts (MDS-RS), 15 MDS

with multilineage dysplasia (MDS-MLD), 17 MDS with

excess blasts (MDS-EB1/EB2). Most patients were male

(58.5%), and the mean age was 68 years (range 28−89

years). Patients were classified according to the IPSS-R,

with a predominance of low risk (31.7%). The cytogenetic

evaluation was performed for all cases, of which twenty-

two (42.3%) presented a normal karyotype, 19 (36.5%)

showed an abnormal karyotype and 11 (21.2%) presented

no metaphases. The summary of clinical and laboratory

characteristics is presented in Table 1.

Gene expression profile (mRNA)

PD-L1 expression is associated with dyserythropoiesis in MDS

Patients who presented dyserythropoiesis showed a signifi-

cantly higher PD-L1 expression (median 3.740 £ 10�495%, CI

0.000434228:0.000796652 versus the median 1.762 £ 10� 495%,

CI 0.000085460:0.000579451) (p = 0.050; Figure 1) than patients

without dyserythropoiesis.

Three patients were significantly among the outliers in

the dyserythropoiesis analysis and other analyses. These

patients were over 60 years old, with blasts in the bone

marrow (8.5%, 12%, and 14%), hemoglobin levels below 8 g/

dL, and dysplasias. Regarding the karyotype, one of them

presented a complex karyotype and two, no metaphases.

All patients were classified as MDS with excess blasts and,

of utmost importance, died during the study.

The upregulation of programmed death-ligand 1 is associated

with excess blasts in MDS classification

Patients classified as having an excess of blasts 2 (MDS-EB2)

(10−19% of blasts in bone marrow), according to the World

Health Organization, presented a significant upregulation in

mRNA expression of the PD-L1, compared to an excess of

blasts 1 (MDS-EB1) (5−9% of blasts in bone marrow; mean:

9.653 £ 10�4 and 95%CI: 0.000177820:0.001752955 versus

2.944 £ 10�4 and 95%CI 0.000144278:0.000444522) (p = 0.050;

Figure 2).

Kaplan-Meier survival analysis

The survival analysis was performed by the Kaplan-Meier

method17 using the Long Rank test as a post-test. The outlier

patients (worst prognosis) had a median of 14 months with a

95%CI from 1 to 34.8, while the other patients in the study

had a median of 44 months with a 95%CI from 32.3 to 55.6 and

the log-rank test with p = 0.018 (Figure 3).

PD-L1 expression according to MDS clinical characteristics

We also evaluated other clinical variables. The statistical sig-

nificance was not reached (Table 2).

Figure 1 –Gene expression of PD-L1 in total bone marrow

samples of MDS patients with presence of dyserythropoie-

sis. Patients who presented dyserythropoiesis showed a

higher PD-L1 expression than patients without dyserythro-

poiesis.

Figure 2 –The upregulation of PD-L1 expression was signifi-

cantly identified in MDS-EB1 subtype (5−9% of blasts) com-

pared to MDS-EB2 (10−19% of blasts).
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Discussion

The immune dysregulation began to be explored in recent

decades as an essential component in the pathogenesis of the

MDS.18,6 The MDS heterogeneity makes it difficult to deter-

mine an immunological profile that can be explored in immu-

notherapy studies. Several drugs targeting the PD-1/PD-L1

pathway have been tested in the MDS and the results are still

contradictory.19−21 In this study, we sought to associate the

PD-L1 gene expression levels with clinical and prognostic

characteristics to contribute to the research directing patients

to treatment with checkpoint inhibitor drugs.

The PD-L1 overexpression in bone marrow cells of MDS

patients was directly linked to unfavorable prognostic

markers, such as the dyserythropoiesis and the most

advanced subtype according to theWHO 2016 Classification.22

The dyserythropoiesis occurs when there are 10% or more

dysplastic erythroid cells in the bone marrow and affects

about 80% of patients with MDS.23 Recent work by our group

has suggested the hyperactivation of the toll-like receptor 3

(TLR-3) by endogenous retroviruses (ERVs) as the trigger of

the dyserythropoiesis in MDS.24 In addition, the TLR-3-ERV

axis has also been identified as an interferon response

inducer through the interferon regulatory factor 3 (IRF3), IRF7

and nuclear factor kappa B (NF-kB). In cancers, NF-kB directly

induces the expression of the PD-L1 through binding to its

promoter and post-transcriptionally by indirect pathways.25

Thus, we speculate that this would be a line between dyspla-

sias, ERVs and PD-L1.

Hypomethylating agents (HMAs) are the primary drugs

used for high-risk MDS, such as the MDS-EB2 subtype. These

drugs, including the 5-azacytidine (AZA) and 5-aza-

20deoxycytidine (DEC), act as inhibitors of DNA methyltrans-

ferase and lead to DNA demethylaton. The DNA demethyla-

tion restores the transcription of many silenced genes,

Figure 3 –The overall survival in patients.

Table 2 – PD-L1 expression according to MDS clinical characteristics.

Characteristics N Median 95%CI lower 95%CI upper P-value

Gender

Male 31 3.740 £ 10�4 0.000413284 0.000889361 0.206a

Female 22 2.854 £ 10�4 0.000291751 0.000621776

Age

≤ 60 16 4.297 £ 10�4 0.000337115 0.000719360 0.574a

> 60 37 3.059 £ 10�4 0.000380503 0.000797227

Blasts ≤ 2% 29 6.016 £ 10�4 0.000379071 0.000616509 0.474b

2−5% 6 2.951 £ 10�4 0.000169782 0.000448984

5−10% 7 2.576 £ 10�4
�0.000011060 0.001505231

> 10% 4 9.762 £ 10�4
�0.000886166 0.003335266

Dysgranulopoiesis Yes 29 2.670 £ 10�4 0.000352559 0.000882482 0.706a

No 23 4.942 £ 10�4 0.000364501 0.000639665

Dysmegakaryopoiesis Yes 31 3.059 £ 10�4 0.000342139 0.000795544 0.665a

No 21 3.652 £ 10�4 0.000346461 0.000779435

Hemoglobin < 8 g/dL 20 4.341 £ 10�4 0.000356553 0.001073697 0.369b

8 - 10 g/dL 14 4.400 £ 10�4 0.000332574 0.000799297

≥ 10 g/dL 19 2.549 £ 10�4 0.000264596 0.000579004

Absolute Neutrophil < 0.8 £ 109/L 14 5.479 £ 10�4 0.000323061 0.000839954 0.519a

≥ 0.8 £ 109/L 39 3.059 £ 10�4 0.000373970 0.000759296

Platelet < 50 £ 109/L 12 6.632 £ 10�4 0.000366206 0.001079860 0.519b

50 - 100 £ 109/L 12 3.158 £ 10�4 0.000173418 0.000989049

≥ 100 £ 109/L 29 3.375 £ 10�4 0.000304667 0.000701443

Karyotype Normal 22 4.400 £ 10�4 0.000328903 0.000613506 0.497a

Altered 19 3.740 £ 10�4 0.000331547 0.000967337

IPSS-R Prognostic Categories Very low 6 6.309 £ 10�4 0.000185411 0.000872856 0.369b

Low 13 3.652 £ 10�4 0.000295917 0.000674760

Intermediate 5 5.148 £ 10�4 0.000152733 0.001090067

High 6 4.635 £ 10�4 0.000084014 0.001166486

Very high 4 3.698 £ 10�4
�0.001073626 0.002953426

Abbreviations: IPSS-R, Revised International Prognosis Score System.

a Mann-Whitney Test.
b Kruskal-Wallis Test.
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including tumor suppressors.26 Evidence has already shown,

however, that patients in treatment with HMAs have a loss of

response after approximately two years of treatment.27,28

Chiappinelli et al. showed that PD-L1 levels are upregulated

after using HMAs.29 An increase in PD-L1 levels after using

HMAs is possibly associated with the tumor escape and loss

of response to the treatment.30 Based on our findings, we

hypothesize that these high-risk patients with higher levels

of PD-L1 may be more resistant to HMA therapy and an alter-

native management could be an association between HMAs

and PD-L1 checkpoint inhibitors.

Another recent study by Sallam et al. found that bone mar-

row stem cells from MDS patients with mutations in the TP53

gene had a higher expression of the PD-L1 than those with the

wild-type TP53 gene.13 Mutations in the TP53 tumor suppres-

sor gene confer a poor prognosis in the myelodysplastic syn-

drome. Even in patients with a good prognostic karyotype,

such as the deletion in the long arm of chromosome 5 (5q-), a

second mutation in the TP53 completely transforms the

course of the disease, leading the patient to a high-risk condi-

tion with a lower survival.31 Different from the findings by

Salman et al., which did not find significant differences

between disease subtypes and the PD-L1 expression, our

results showed a statistically significant increase in the MDS-

EB2 versus MDS-EB1 subtypes and, despite the statistics,

patients classified in the MDS-EB2 showed a higher expres-

sion of the PD-L1 than all other subtypes in our cohort.

A study performed on AML patients demonstrated that the

loss of the p53 leads to the PD-L1 expression through the p53/

miR34/PD-1 pathway.32 The p53 molecule induces the expres-

sion of the microRNA-34, inhibiting the expression of the PD-

L1 by binding to the 30UTR regulatory region of the gene.33 In

MDS, we believe that, similar to AML, mutations in the TP53

that directly reflect the p53 protein deregulate the miR-34

pathway and increase the expression of the PD-L1. Unfortu-

nately, our data lacks a mutational analysis of the TP53 gene

and microRNA expression. Nevertheless, we believe that our

data indicate that the PD-L1 expression is a biomarker of a

worse prognosis in the MDS.

Regarding our predominant group of outliers, we had a

complex karyotype result in one of the three. Williams et al.

observed a higher rate of the PD-L1 expression in bone

marrow blasts of AML patients with complex karyotypes.34

Chromosomal instability and defects in DNA repair pathways

are involved in the pathogenesis of high-risk MDS, which

often has an accumulation of mutations.35,36 Studies suggest

that tumors with defects in DNA repair pathways present a

higher expression of the PD-L1 due to the context of genomic

instability that favors the generation of neoantigens and,

consequently, activation of the INF and PD-L1.37,38 Possibly,

targeting anti-PD-L1 therapies to patients with MDS who

have cytogenetic abnormalities and a high mutational load,

particularly in DNA repair pathways, are more susceptible to

a positive therapeutic response.

Conclusion

In conclusion, we believe that the PD-L1 expression data pre-

sented here in our cohort were associated with worse

prognosis markers, such as the dyserythropoiesis and its

worst subtype, MDS-EB 2. We speculate that the increase in

PD-L1 levels after using hypomethylating agents is one of the

factors responsible for the loss of response to this treatment.

An initial combination of HMAs with PD-L1 inhibitors should

be tested in clinical trials. In the group of outliers, the idea

remains that the high expression of the PD-L1 is a biomarker

of a worse prognosis in MDS, but with great possibilities of

targeting anti-PD-L1 therapy.
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