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A B S T R A C T

Myeloid neoplasms result from molecular alterations in hematopoietic stem cells, with

acute myeloid leukemia (AML) being one of the most aggressive and with a poor progno-

sis. Hematopoietic cell kinase (HCK) is a proto-oncogene that encodes a protein-tyrosine

kinase of the Scr family, and it is highly expressed in AML. The present study investigated

HCK expression in normal hematopoietic cells across myeloid differentiation stages and

myeloid neoplasm patients. Within the AML cohort, we explored the impact of HCK

expression on clinical outcomes and its correlation with clinical, genetic, and laboratory

characteristics. Furthermore, we evaluated the association between HCK expression and

the response to antineoplastic agents using ex vivo assay data from AML patients. HCK

expression is higher in differentiated subpopulations of myeloid cells. High HCK expres-

sion was observed in patients with chronic myelomonocytic leukemia, chronic myeloid

leukemia, and AML. In patients with AML, high levels of HCK negatively impacted overall

and disease-free survival. High HCK expression was also associated with worse molecular

risk groups and white blood cell count; however, it was not an independent prognostic

factor. In functional genomic analyses, high HCK expression was associated with several

biological and molecular processes relevant to leukemogenesis. HCK expression was also

associated with sensitivity and resistance to several drugs currently used in the clinic. In

conclusion, our analysis confirmed the differential expression of HCK in myeloid neo-

plasms and its potential association with unfavorable molecular risks in AML. We also
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provide new insights into HCK biological functions, prognosis, and response to antineo-

plastic agents.

� 2023 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published

by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Myeloid neoplasms result frommolecular alterations in hemato-

poietic stem cells and comprise a broad spectrum of blood can-

cers with different pathophysiology, prognosis, and therapy.

Among these, acute myeloid leukemia (AML) stands out due to

its aggressiveness and unfavorable clinical outcome. In recent

years, a substantial amount of knowledge about the molecular

basis of AML has been generated, leading to the approval of new

therapies, better risk stratifications, and advances in clinical and

basic research.1,2 One example is the update of diagnostic criteria

for AMLwith recurringmolecular alterations.3

In light of these facts, several initiatives have mapped the

genome and transcriptome of patients with AML and made

these data publicly available. The Cancer Genome Atlas

(TCGA) and Beat AML initiatives are the most well-known and

used.4,5 Accompanying the evolution and availability of data,

online tools have provided data compilation and enabled the

generation and testing of hypotheses in real and well-docu-

mented cohorts of AML.6−8

Our research group has been characterizing the biological

functions of the hematopoietic cell kinase (HCK), a proto-onco-

gene encoding a protein tyrosine kinase of the Src family, and

assessing its potential as a pharmacological target.9−11 The

HCK gene was identified as highly expressed in CD34+ cells

obtained from patients with myelodysplastic syndrome (MDS)

using a microarray assay12 and in patients with de novo AML.9

Genetic (shRNA) or pharmacological inhibition of HCK demon-

strated relevant antileukemic effects in vitro and ex vivo cell

models. Despite the growing amount of evidence on the contri-

bution of HCK to leukemogenesis, this field of oncohematology

and pharmacology has much potential to be explored.

The present study evaluated HCK expression in normal

hematopoietic cells at various stages of myeloid differentia-

tion and patients with myeloid neoplasms [MDS, chronic

myelomonocytic leukemia (CMML), chronic myeloid leukemia

(CML), or AML]. Within the AML cohort, our investigation

delved into the impact of HCK expression on clinical out-

comes and its correlation with clinical, genetic, and labora-

tory results. Furthermore, we evaluated the association

between HCK expression and the response to antineoplastic

agents using in silico analyses, using data obtained from ex

vivo assays conducted on samples from AML patients.

Material andmethods

Analysis from data available on public databases

Expression data in normal and malignant hematopoietic cells: HCK

mRNA expression data (probe 208018_s_at) from the different

hematopoietic cell populations were obtained from the

GSE24759 data set using the GEO2R platform (https://www.

ncbi.nlm.nih.gov/geo/geo2r). HCK mRNA expression data

(probe 208,018_s_at) from samples obtained from healthy

donors (CD34+ cells, n = 5), MDS (n = 29), CMML (n = 4), CML

(n = 35), and AML (n = 89) patients were obtained from the

AmaZonia! Database 2008 (http://amazonia.transcriptome.

eu).8 The gene expression values were obtained from cDNA

microarray experiments utilizing the Affymetrix HUG133 plus

2.0 array system, and the data were crossed using tumor-spe-

cific identification numbers. Gene expression, clinical, molec-

ular risk, and mutational profile data from the RNA-seq

analysis of the TCGA AML study were obtained from cBioPor-

tal (https://www.cbioportal.org/).6,13 Graphical visualization

of HCK mRNA levels in different cytogenetic subtypes of AML

were obtained from BloodSpot (https://servers.binf.ku.dk/

bloodspot/).
Functional genomics analysis: All transcripts from the RNA-

seq data from the TCGA AML study4 were pre-ranked accord-

ing to their differential expression by comparing samples

with high and low HCK expression using the normalized

quantile and the limma-voom package in Galaxy (https://use

galaxy.org/). Heatmaps displaying the top 25 upregulated and

25 downregulated genes in the low and high HCK expression

samples were constructed using ClusterVis (https://biit.cs.ut.

ee/clustvis/). Volcano and correlation plots were created using

GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA).

Gene set enrichment analysis (GSEA) was performed with

GSEA v.4.014 using the Hallmark gene sets curated by MSigDB.

Enrichment scores (ES) were calculated based on the Kolmo-

gorov−Smirnov statistic, tested for significance using 1000

permutations, and normalized (NES) to determine the size of

each gene set. A false discovery rate (FDR) of 25 % (q-value of

< 0.25) and a p-value of < 0.05 were considered statistically

significant.
Drug sensitivity prediction: The area under the curve (AUC)

values resulting from the 165 drugs tested in ex vivo assays by

the Beat AML study (n = 520) were used to explore the correla-

tion between the drug response and HCK expression.15 The

AUC values from 448 drugs tested in AML cell lines16 and

those available in the Genomics of Drug Sensitivity in Cancer

(GDSC) resource (https://www.cancerrxgene.org)17 were also

used. The following AML cell lines were considered: EOL-1,

MOLM-13, MOLM-16, MV4-11, NB4, OCI-AML2, OCI-AML3, PL-

21, SKM1, U-937, HL-60, Kasumi-1, KG-1, and THP-1. Gene

expression data of cell lines were retrieved from the Expres-

sion Atlas database (www.ebi.ac.uk/gxa/experiments/E-

MTAB-2770). For a better interpretation of the results

obtained, the molecular targets (proteins/genes) of the identi-

fied drugs were listed and analyzed by the GeneMANIA soft-

ware (https://genemania.org/) to determine the biological and

molecular processes associated with the sensitivity and resis-

tance correlated to HCK expression.
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Experimental validation

Cell culture and chemical reagents: NB4 and HL-60 cell lines were

used for experimental validation. The cell lines were tested

and authenticated by short tandem repeat (STR) matching

analysis using the PowerPlex 16 HS system (Promega, Madi-

son, WI, USA) and an ABI 3500 Sequence Detector System

(Thermo Fisher Scientific, Fairlawn, NJ, USA). Cell cultures

were performed following the recommendations of Deutsche

Sammlung von Mikroorganismen und Zellkulturen GmbH

(DSMZ). ATRA was obtained from Sigma-Aldrich (St. Louis,

MO, USA).

Cell differentiation: The NB4 and HL-60 leukemia cell lines

were exposed to ATRA (1 mM) for 72 h. Next, the cells were

washed with ice-cold phosphate-buffered saline (PBS), resus-

pended in 100 mL PBS containing 5 mL of PE-labeled anti-

CD11b (clone MEM-174, EXBIO Praha, a.s., Czech Republic),

and incubated at room temperature in a light-protected area

for 30 min. Then, the cells were washed with ice-cold PBS and

resuspended in 300 mL of PBS. All specimens were obtained by

flow cytometry (FACSCalibur; Becton Dickinson, Mountain

View, CA, USA) and analyzed using FlowJo software (Tree

Star, Inc., San Carlos, CA, USA). For morphology analysis, cells

(1 £ 105) were adhered to microscope slides using cytospin

(Serocito, model 2400; FANEM, Guarulhos, Brazil), followed by

Rosenfeld staining. Images were acquired using a Leica

DM2500 optical microscope and the LAS software version 4.6

(Leica, Bensheim, Germany).

Quantitative PCR: Total RNA was obtained using TRIzol

Reagent (Thermo Fisher Scientific). Complementary DNA was

synthesized from 1 mg of RNA using a RevertAidTM First

Strand cDNA Synthesis Kit (MBI Fermentas, St. Leon-Rot, Ger-

many). Quantitative PCR (qPCR) was performed using an ABI

7500 Sequence Detector System (Thermo Fisher Scientific)

with SybrGreen System (Thermo Fisher Scientific) and specific

primers for HCK (FW: GAGTTCATGGCCAAAGGAAG, RV:

GGAGGTCTCGGTGGATGTAG). HPRT1 (FW:

GAACGTCTTGCTCGAGATGTGA, RV: TCCAGCAGGTCAG-

CAAAGAAT) was used as the reference gene. The relative

quantification value was calculated using the 2�DDCT

Figure 1 –HCKmRNA levels in normal hematopoietic cells and upon cell differentiation. (A) Graphical legend for the myeloid

differentiation hierarchy illustrating the analyzed cell subpopulations used in the analysis (https://mindthegraph.com/).

Abbreviations: HSC, hematopoietic stem cells; CMP, commonmyeloid progenitor; GMP, granulocyte−macrophage progenitor;

MEP, Megakaryocyte/erythrocyte progenitor; ERY, erythrocytes MEGA, megakaryocytes; META, metamyelocytes; NEU, neutro-

phils; EOS, eosinophils; BASO, basophils; MONO, monocytes. (B) Gene expression profile of HCK (probe 208018_s_at) in myeloid

cell subpopulations (GSE24759). The p-values and cell lineages are indicated in the graphs: * p < 0.05 cell lineage vs. HSC1, #

p < 0.01 cell lineage vs. HSC2; ANOVA and Bonferroni post hoc test. (C) Rosenfeld-stained cytospin preparation (magnification

400 £ ) and histogram of CD11b expression in NB4 and HL-60 cells exposed to a vehicle or 1 mMATRA for 72 h. These data are

representative of at least three independent experiments. HCKmRNA expression in NB4 and HL-60 cells exposed to a vehicle

or 1 mMATRA for 72 h. The HPRT1was used as the reference gene, and samples from vehicle-treated cells were used as cali-

brators. The bars indicate the mean § SD of at least four independent experiments; **p < 0.01; Student’s t-test.
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equation.18 A negative "no template control" was included for

each primer pair. The dissociation protocol was performed at

the end of each run to check for nonspecific amplification.

Statistical analysis

The impact of HCK expression on clinical outcomes [overall

survival (OS) and disease-free survival (DFS)] was investigated

in the cohort of 173 adult AML patients from the TCGA.4

Dichotomization was performed according to the ROC curve

and its respective AUC and C-index using a maximization

metric provided by the R package, Cutpointr.19,20 Statistical

analyses were performed using GraphPad Prism 8 (GraphPad

Software, Inc.), Stata Statistic/Data Analysis 14.1 (Stata Corp.,

College Station, TX, USA), and SPSS Statistics for Windows,

version 21.0 (SPSS, Chicago, IL, USA). The OS was calculated

as the difference in months between the diagnosis and the

last follow-up or death date, and DFS between the date of

complete remission and relapse or the date of the last follow-

up or death (which occurred first). Survival measures were

estimated using Kaplan−Meier curves and compared using

the Log-rank test and/or Cox regression. Student’s t-test,

ANOVA, Kruskal−Wallis, or Mann−Whitney test were used

for measurable factors. The chi-squared test or Fisher’s exact

test was used for categorical factors. A value of p < 0.05 was

considered statistically significant.

Results

HCK is highly expressed in differentiated myeloid cells

First, HCK transcript levels were characterized in myeloid cell

subpopulations with different degrees of maturation. HCK

mRNA levels were highly expressed in granulocytic and

monocytic cells compared to normal hematopoietic stem

cells (all p < 0.05; Figure 1A,B). Notably, NB4 and HL-60 cells

showed higher levels of HCK expression after ATRA-induced

granulocytic differentiation (p < 0.05 Figure 1C).

HCK is highly expressed in myeloid neoplasms, and it is

associated with unfavorable molecular risk in AML

Next, HCK expression was evaluated in myeloid neoplasms,

including MDS, CMML, CML, and AML. Transcriptional levels

of HCK were increased in patients with CMML, CML, and AML

compared to CD34+ cells from healthy donors (all p < 0.05,

Figure 2A). In patients with AML, HCK expression was higher

in the intermediate and poor molecular risk groups (p < 0.05,

Figure 2B). Among the AML molecular subgroups, the highest

levels of HCK were observed in patients with normal, com-

plex, trisomy 8, and t(9;11) + other karyotypes (Figure 2C).

High HCK expression negatively impacted OS (HR: 2.02,

Figure 2 –HCK is highly expressed and negatively impacts clinical outcomes in acute myeloid leukemia. (A) HCK (probe

208018_s_at) mRNA levels were compared between samples from normal hematopoietic cells (CD34+ cells), myelodysplastic

syndromes (MDS), chronic myelomonocytic leukemia (CMML), chronic myeloid leukemia (CML), and acute myeloid leukemia

(AML) patients. The "y" axis represents mRNA expression levels at arbitrary values. Number of subjects for each group are

indicated. The data sets were cross-referenced using tumor-specific identification numbers. *** p < 0.001; Kruskal−Wallis test

and Dunn post-hoc test. (B) HCKmRNA levels were compared among AML patients from the TCGA cohort stratified by molecu-

lar risk. Number of subjects for each group are indicated. **p < 0.01, ***p < 0.0001; Kruskal−Wallis test and Dunn post-hoc test.

(C) Schematic representation of HCK expression in the different molecular subtypes of AML obtained from the BloodSpot soft-

ware (https://servers.binf.ku.dk/bloodspot/). (D) Kaplan-Meier curves represent overall survival for AML patients dichotomized

according to high or low HCK expression (using the ROC curve as the cut-off point). Hazard ratio (HR), 95 % confidence interval,

and p values are indicated (log-rank test).
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p = 0.002) and DFS (HR: 1.80, p = 0.02) in AML patients

(Figure 2D).

Similar results were obtained by Cox regression in uni-

variate analyses (Table 1). However, when age, white blood

cell count, and molecular risk were used as covariates,

HCK expression was not an independent prognostic factor.

However, a strong association between molecular risk and

white blood cell count was observed (Table 2). Regarding

the mutational profile, high HCK expression was associ-

ated with a lower frequency of mutations in IDH1 and a

higher frequency of mutations in CEBPA (all p < 0.05, Sup-

plementary Table 1).

High HCK expression is associated with relevant biological

and molecular processes in the development and progression of

AML

The dichotomization of AML patients into high and low HCK

expression defined two groups with distinct genetic signa-

tures (Figure 3A-C), which were associated with relevant bio-

logical and molecular processes in the development and

progression of AML (Figure 3D and Supplementary Table 2).

For example, there are positive correlations between high

HCK expression and inflammatory response, IL6/JAK/STAT3

signaling, apoptosis, PI3K/AKT/mTOR signaling, IL2/STAT5

signaling, P53 pathway, KRAS signaling, hypoxia, reactive

oxygen species (ROS) pathway, and NOTCH signaling (all FDR

< 0.25 and p < 0.05, Figure 3D).

HCKmRNA levels are associated with drug sensitivity in ex

vivo and in vitro assays in AML

Finally, we questioned whether HCK levels could impact

the response to antineoplastic agents in AML models. In

the Beat AML study,5,15 transcriptional levels of HCK were

positively correlated with fifteen drugs (artemisinin, GW-

2580, DBZ, Bay 11−7085, S31−201, NF-kB activation inhibi-

tor, CYT387, SB-431,542, doramapimod, idelalisib, azacyti-

dine, JNJ-38,877,605, ruxolitinib, roscovitine, and GSK-

1904529A; all p < 0.05) and negatively correlated with two

drugs (entrectinib and panobinostat; all p < 0.05) in assays

with primary cells from AML patients (Figure 4A). Addi-

tionally, in the study by Lee et al.16 that used AML cell

lines, HCK mRNA levels were negatively correlated with

twenty-two drugs (tretinoin, etoposide, mitoxantrone, vin-

cristine, PKI-587, tamibarotene, bexarotene, cladribine, vin-

blastine, mitomycin C, melphalan, daunorubicin, AZD7762,

AC-220, pazopanib, tozasertib, AT-7519, PD0332991, irinote-

can, fludarabine, BI-2536, and PF-04691502; all p < 0.05) and

positively correlated with three drugs (DBZ, valproic acid,

and pravastatin; all p < 0.05; Figure 4B).

The molecular targets of the identified drugs were ana-

lyzed in a network to identify the biological and molecular

processes associated with sensitivity and resistance based

on HCK expression. We found that drugs negatively asso-

ciated with HCK expression modulate transmembrane

receptor protein kinase activity, protein tyrosine kinase

activity, ligand-activated transcription factor activity, reg-

ulation of PI3K signaling, and ERK1 and ERK2 cascade (all

FDR < 0.01, Figure 4C). In contrast, drugs positively
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Table 2 – Association of HCK expression with clinical andmolecular factors in TCGA acute myeloid leukemia cohort.

Clinicopathological factors1 HCK, n (%)

n Low2 High2 p-value4

Total 173 48 (27.7) 125 (72.3)

Age 0.35

< 60 91 27 (56.3) 64 (51.2)

≥ 60 82 21 (43.7) 61 (48.8)

Age (years), median (range) 58 (18 - 88) 56 (21 − 82) 59 (18 − 88) 0.33

Bone marrow blasts (%), median (range) 72 (30 �100) 78 (32 − 100) 71 (30 − 98) 0.17

White blood cell count £ 109/L, median (range) 17 (0.4 - 297.4) 3.9 (0.4 − 297) 26.1 (0.8 − 224) 0.0008

Gender 0.74

Male 92 23 (47.9) 69 (55.2)

Female 81 25 (52.1) 56 (44.8)

Molecular risk3 0.045

Good 33 15 (31.3) 18 (14.6)

Intermediate 95 24 (50.0) 71 (57.7)

Poor 42 9 (18.7) 33 (26.8)

Abbreviations: TCGA, The Cancer Genome Atlas; AML, acute myeloid leukemia.

1 The clinical and laboratorial data of TCGA AML cohort were obtained from cBioPortal for Cancer Genomics (http://www.cbioportal.org).
2 Gene expression values were dichotomized by ROC curve and C statistic.
3 Molecular risk was stratified according TCGA study; 3 AML patients were not classified.
4 For statistical analyzes, Mann−Whitney test was used for measured factors, and Fisher’s exact test or Chi-squared test was used for categorical factors.

Figure 3 –HCK transcript levels are associated with relevant biological andmolecular processes involved in acute myeloid leu-

kemia development and progression. (A) Heatmap constructed using ClusterVis that summarizes the expression of the top 25

upregulated and 25 downregulated genes for high versus low HCK expression. Color intensity represents the ɀ-score within

each row. (B) Volcano plots depicting the extent (x-axis) and significance (y-axis) of differential gene expression for each gene,

comparing high versus low HCK. (C) Spearman correlation showing the genes positively and negatively correlating with the

HCK in AML TCGA patients. (D) Gene Set Enrichment Analysis (GSEA) plots for biological processes associated with HCK

expression in AML patients. The top portion of the plot shows the running enrichment scores (ESs) for the gene set. The point

with the maximum deviation from zero is defined as the ES for the gene set. The leading-edge subset (the subset of genes with

themost significant contribution to the ES) is shown as a vertical bar accumulating before the peak score for a positive ES or

after the peak score for a negative ES. FDR-adjusted p values (NOM p-value) and enrichment scores normalized for gene set

size (NES) are indicated.
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associated with HCK expression modulate transmembrane

receptor protein kinase activity, protein serine/threonine

kinase activity, response to peptide hormone, myeloid cell

differentiation, and cytokine receptor binding (all FDR <

0.01, Figure 4C).

Discussion

In the present study, we took advantage of publicly deposited

data containing HCK gene expression in the normal and

Figure 4 –HCK expression is associated with drug sensitivity in ex vivo and in vitro assays in acute myeloid leukemia. Drug

sensitivity according to HCK expression in ex vivo (A) and in vitro (B) assays. Drugs with p < 0.05, as determined by the Spear-

man correlation test, are indicated. (C) The molecular targets (proteins/genes) of the identified drugs were listed and analyzed

by GeneMANIA software (https://genemania.org/) to determine the biological andmolecular processes associated with the

sensitivity and resistance correlated to HCK expression. FDR values are indicated.
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neoplastic myeloid compartment to better understand this

gene’s biological characteristics and role in the prognosis and

potential response to therapies. The HCK gene was initially

characterized as abundant in lymphoid and myeloid lineages

of hematopoietic cells21; however, recent studies have indi-

cated a role for this gene in solid tumors.22−26 The increased

expression of HCK in differentiated myeloid cells is notable.

Previously, our research group described a revealing role for

HCK in erythroid cell differentiation.9 It was later shown that

amplification of the HCK gene can result in aberrant marrow

erythroid maturation and splenomegaly, recapitulating the

phenotype of myeloproliferative neoplasm.27 In this present

study, the increase in HCK expression in the myeloid com-

partment was validated in experiments using cell lines and

suggests that HCK participates in signal transduction and

functions in immune system cells. In this context, HCK has

been associated with macrophage activation,28 neutrophil-

mediated autoinflammation,29 tumor progression through

myeloid infiltrates in solid tumors,30 or even participating in

the response to immunotherapy through T cell infiltration.31

Thus, the role of HCKmust be interpreted in a context-depen-

dent manner.

Of note, paradoxical data was found in our analyses: HCK

expression increases during cellular differentiation of normal

myeloid cells, and HCK expression increases in leukemic

cells. These data suggest that asynchronous expression of

HCK during aberrant differentiation of leukemic blasts could

confer proliferative, survival, and aberrant response to che-

motaxis advantages. Indeed, asynchronous expression of dif-

ferentiation markers is a common event in leukemic

blasts.32,33 However, the different roles of HCK in the differen-

tiation of normal and malignant hematopoietic cells still

need further investigation.

In a previous study, our research group reported high HCK

expression in CD34+ cells isolated from de novo AML patients

and low-risk MDS patients from a small single-center cohort.9

Data obtained from publicly deposited cohorts confirm the

initial findings and expand the observation to other myeloid

neoplasms such as CMML and CML. Using the AML cohort of

the TCGA and a statistical tool to define the best cut-off point

for dichotomization into two groups (low and high HCK

expression), we observed that high HCK expression negatively

impacts the clinical outcomes of patients with AML. Similar

results were reported for the TCGA and two independent

cohorts but with arbitrary (median) cut-off points.34,35 Among

these investigations, our study was better at accurately iden-

tifying two groups with distinct prognoses based on HCK

expression, highlighting the importance of using statistical

tools for dichotomizing cohorts for gene expression analysis.

Recently, HCK has gained prominence in the phosphopro-

teome analyses of the TCGA AML cohort: FLT3-TKD muta-

tions were associated with phosphorylation of the active site

tyrosine-411 of HCK, suggesting a role for HCK in the

mutated-FLT3 signaling.36 In our functional genomics analy-

sis, the correlation between high HCK expression and path-

ways known to be modulated by it, such as PI3K/AKT/mTOR,

MAPK, and JAK/STAT,9,37 stands out. Functional in vitro and in

vivo studies suggest that HCK may sustain the self-renewal

ability of leukemic stem cells by activating the ERK1/2-MYC-

CDK6 signaling axis in AML.34 On the other hand, pathways

such as NOTCH signaling, hypoxia, and ROS identified in the

present study open new perspectives for further investiga-

tion.

Given the promising results of the contributions of HCK to

the phenotype of hematological neoplasms, pharmacological

inhibitors of this kinase with different degrees of selectivity

were identified, including iHCK-37,9 KIN-8194 (dual HCK/BTK

inhibitor),38 dasatinib,31 and RK-20449.31 Faced with several

possibilities for pharmacological intervention in HCK, our

study identified the impact of HCK transcript levels on the

response to antineoplastic agents, which may open new per-

spectives for therapeutic combinations. For example, in this

present study, high HCK expression was associated with 5-

azacytidine resistance in the ex vivo assays of the Beat AML

study. In a previous study, the pharmacological HCK inhibi-

tion, using iHCK-37, potentiated the reduction in cell viability

induced by 5-azacytidine in KG1a, HL-60, and K-562 leukemia

cells.11 In addition, iHCK-37 increased 5-azacytidine-induced

apoptosis in CD34+ cells isolated from de novo AML patients.11

Our study opens perspectives for the function of HCK in

myeloid neoplasms; however, it has limitations. In the

cohorts studied, the data available for MDS, CMML, and CML

are limited and do not allow for a clinical-laboratory associa-

tion with the expression of HCK, which would be relevant,

especially in the case of MDS, a very heterogeneous disease.

Another point that deserves to be highlighted is that our

study was based on gene expression, and validations using

protein expression analyses should be considered in future

studies.

In summary, our analyses confirmed the differential

expression of HCK in myeloid neoplasms and its potential

association with unfavorable molecular risks in AML. We also

provided new insights into the biological functions of HCK

and its influence on disease prognosis and response to anti-

neoplastic agents.
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