
Letter to the Editor

Multi-cohort gene expressionmodel enhances prognostic

stratification in diffuse large B-cell lymphoma

1 Dear Editor,

2 Diffuse large B-cell lymphoma (DLBCL), the most common type

3 of lymphoma, in most cases is marked by significant heteroge-

4 neity and aggressive clinical behavior. While standard chemo-

5 therapy often achieves initial responses, these are short-lived,

6 and resistance and relapse are frequent challenges.1 Tradition-

7 ally, risk stratification has relied on clinical tools, including the

8 International Prognostic Index (IPI) and its variation.2 However,

9 molecular stratification is promising to predict outcomes with

10 greater accuracy, though gene-based approaches are still pre-

11 liminary.3 Progress in this field is hindered by limited sample

12 sizes and the substantial intra- and inter-regional variability of

13 DLBCL.4,5 Consequently, large-scale studies are essential to

14 refine risk stratification and optimize patient outcomes.

15 This study aimed to establish a prognostic gene expression

16 signature for patients with DLBCL based on tumor transcriptome

17 patterns. To achieve this, we analyzed transcriptome and sur-

18 vival data from 11 diverse cohorts worldwide. Given the variabil-

19 ity in RNA sequencing or microarray platforms across the 11

20 datasets, we focused on the genes common to all datasets,

21 resulting in a panel of 11,425 genes. Detailed information regard-

22 ing the datasets can be found in Supplementary Table 1. Due to

23 platform-specific differences in scale, the gene expression values

24 were transformed into z-scores. Datasets with fewer than 100

25 patients were combined into a cohort referred to as the Merged

26 Cohort. In total, six cohorts were used in this study: the National

27 Cancer Institute Cohort (GSE10846), University of York Cohort

28 (GSE181063), University of York II Cohort (GSE32918), Univer-

29 sit€atsmedizin Berlin Cohort (GSE4475), University of Leeds Cohort

30 (GSE69053), and the Merged Cohort (GSE69053, E_TABM_346,

31 GSE11318, GSE21846, GSE23501, GSE57611, and TCGA-DLBC).

32 For each cohort, a univariate Cox regression was per-

33 formed employing all genes in the panel, identifying those

34 with a p-value <0.05 as prognostic. Genes were defined as

35 core prognostic genes (CPGs) if they consistently predicted

36 either favorable prognosis in at least 5 out of 6 cohorts or

37 unfavorable prognosis in at least 5 out of 6 cohorts, with no

38 conflicting outcomes.

39This process led to the identification of 50 CPGs. To mitigate

40the risk of overfitting, a penalized Cox regression was applied

41using the Least Absolute Shrinkage and Selection Operator

42(Lasso-Cox), thereby allowing for the selection of only the most

43significant CPGs. The University of York cohort had the largest

44number of patients and was therefore used to train the Lasso-

45Coxmodel, while the other cohorts were used for validation. The

46final risk score was developed based on the expression levels of

4722 CPGs selected through the Lasso-Cox regression (Figure 1A).

48The formula for calculating the risk score is as follows:

Risk Score ¼ b1� Gene1ð Þ þ b2� Gene2ð Þ þ . . .þ b22� Gene22ð Þ

49

50where ‘bX’ represents the coefficients derived from the Lasso-

51Cox regression, and ‘GeneX’ refers to the z-score of the

52expression of each gene for a given sample. The list of

53selected genes and their corresponding coefficients can be

54found in Supplementary Table 2.

55Patients were then divided into High Risk (> median) and

56Low Risk (≤ median) Groups based on the risk score. Survival

57analysis using Kaplan-Meier curves was conducted, revealing

58that the developed risk groups were significant predictors of

59overall survival in all cohorts (Figure 1B). Additionally, the

60risk score demonstrated high predictive accuracy, achieving

61great (≥0.69) areas under the receiver operating characteristic

62curve (AUC) across all cohorts (Figure 1C). By pooling the haz-

63ard ratios (HR) from the cohorts using a random effects

64model, the HR for death of being in the High Risk Group was

652.73 (range: 2.43−3.05; Figure 1D), further validating the risk

66score as a strong predictor of survival.

67To ensure the prognostic value of the risk groups, even

68when assessed alongside clinical data, we conducted multi-

69variable Cox regressions for each cohort. The results demon-

70strated that the risk groups remained strong predictors of

71survival. Figure 2A presents the clinical characteristics of the

72cohorts analyzed in this study, along with the results of the

73multivariate Cox regression analysis.

74To integrate the established risk groups with other clinical

75variables, we developed a nomogram (Figure 2B) using a meta-

76cohort of patients who provided complete information on sex,
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77 age (over 65 years or 65 years and younger), and DLBCL subtype

78 (germinal center B-cell-like, activated B-cell-like, molecular high-

79 grade B-cell lymphoma, and unclassified), comprising a total of

80 2102 patients. The nomogram showed an excellent AUC for sur-

81 vival prediction at 1, 3, and 5 years (Figure 2C) and generated sur-

82 vival predictions that closely matched observed outcomes as

83determined by the calibration plot (Figure 2D). Moreover, the

84nomogram attained the highest c-index for survival prediction

85when compared to risk groups and clinical variables alone

86(Figure 2E). A free online platform has been developed andmade

87accessible at https://costafilhoetal.shinyapps.io/CoreProgDLBCL/

88to enhance the applicability of the nomogram.

Figure 1 –A: least absolute shrinkage and selection operator penalized cox regression feature selection. B: Kaplan-Meier anal-

ysis of the different cohorts used in this study comparing Low Risk to High Risk Groups. C: Area under the receiver operating

characteristic curve (AUC) for the model in different cohort and time-point evaluations. D: Pooled analysis of the hazard ratio of

being in the High Risk Group.

Lasso: least absolute shrinkage and selection operator.
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Figure 2 –A: Multivariate cox-regression analysis of the risk groups and other available clinical information. B: Nomogram

integrating our risk groups with clinical information. E: Comparison of the concordance index of our model and other varia-

bles. F: Gene set enrichment analysis plot comparing high-risk and low-risk groups in the University of York cohort.

GCB: Germinal center B-cell-like; ABC: Activated B-cell-like; MHG: Molecular high-grade B-Cell lymphoma; UNC: Unclassified.
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89 We performed a Gene Set Enrichment Analysis (GSEA)

90 using raw data from the University of York cohort and the

91 Hallmark of Cancer gene sets from the Molecular Signatures

92 Database (MSigDB) to better understand the biological pro-

93 cesses distinguishing the risk groups. Notably, the GSEA (Sup-

94 plementary Table 3) results revealed that the High Risk Group

95 was predominantly enriched for E2F targets, MYC targets, and

96 G2M checkpoint pathways, while showing downregulation of

97 inflammatory response, interferon-gamma response, and

98 epithelial-mesenchymal transition pathways (Figure 2F).

99 This study introduces a promising approach to prognostic

100 stratification in DLBCL, utilizing gene expression data to iden-

101 tify CPGs and develop a validated risk score. While the IPI and

102 its variations remain widely used for stratification in DLBCL,

103 their discriminative power is often limited, with various stud-

104 ies reporting suboptimal overall survival prediction when

105 used alone.6,7 Nonetheless, the European Society for Medical

106 Oncology (ESMO) currently endorses age-adjusted IPI, which

107 has a reported c-index of 0.613, for stratifying under 60-year-

108 old patients who may benefit from involved-field radiother-

109 apy or autologous stem-cell transplantation.7

110 Furthermore, neither the ESMO nor the National Compre-

111 hensive Cancer Network guidelines have incorporated tran-

112 scriptomic and exome stratification in patient

113 management.8,9 By outperforming traditional approaches

114 focused on histopathology, our model was able to refine risk

115 stratification by integrating precision oncology and shows

116 promise in aiding treatment decisions, addressing the urgent

117 need for improved stratification in a context where 30−50%

118 of DLBCL patients are not cured by standard chemotherapy.10

119 In conclusion, our global multi-cohort study represents a sig-

120 nificant advancement in the prognostic stratification of

121 DLBCL. The integration of this model with clinical variables

122 enabled the development of an accurate nomogram for sur-

123 vival prediction. Future studies should aim to validate this

124 model in large prospective cohorts and explore its integration

125 into clinical practice to enhance patient outcomes.
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