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Introduction

Acute promyelocytic leukemia (APL) accounts for approximately

8−12 % of all acute myeloid leukemia (AML) cases.1 The major-

ity of APL patients harbor the canonical translocation t(15;17)

(q22;q12−23) leading to promyelocytic leukemia::retinoic acid

receptor alpha (PML::RARa) fusion transcripts. In fact, this hall-

mark translocation, present in >95 % of cases of APL, can be

detected using cytogenetic and molecular diagnostic modalities

such as karyotyping, fluorescence in situ hybridization (FISH),

reverse transcription-polymerase chain reaction (RT-PCR) and

next generation sequencing (NGS).2 With the advent of all-trans

retinoic acid (ATRA) and arsenic trioxide (Arsenic Trioxide) in

1988 and 1996, respectively, as cornerstone drugs in the man-

agement of classical APL, the cure rates have improved

immensely and mortality rates have drastically decreased.3,4

However, on rare occasions, morphologically and immu-

nophenotypically diagnosed APL cases are associated with

translocations other than the classic t(15;17). Such atypical

APL cases may harbor translocations resulting in fusions

between RARa and genes such as PLZF, NuMA, NPM, and

STAT5B.5-7 Therapeutically, APL can be divided in two disease

subtypes: the ATRA-responsive subtype, which includes RARa

fusions with PML, NPM1, NuMA, and others; and a ATRA-unre-

sponsiveness subtype characterized by the presence of the

ZBTB16::RARa and STAT5B::RARa fusions.8 Patients with the

ATRA-unresponsive variant exhibit dismal prognoses charac-

terized by frequent relapses and recurrences.9,10 Here we

report a new case of STAT5B::RARa-positive AML focusing on

its diagnostic features and the important role of NGS in its

definitive diagnosis.

Case report

A 42-year-old hypertensive and diabetic male presented to

the hospital with complaints of severe weakness, decreased

* Corresponding author.
E-mail address: sushant.vinarkar@tmckolkata.com

(S. Vinarkar).
https://doi.org/10.1016/j.htct.2024.07.009
2531-1379/� 2024 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier España, S.L.U. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

hematol transfus cell ther. 2025;47(1):103726

Hematology, Transfusion and Cell Therapy

www.htc t .com.br

http://crossmark.crossref.org/dialog/?doi=10.1016/j.htct.2024.07.009&domain=pdf
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
http://orcid.org/0000-0003-3028-6225
mailto:sushant.vinarkar@tmckolkata.com
https://doi.org/10.1016/j.htct.2024.07.009
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.htct.2024.07.009
http://www.htct.com.br


appetite and loss of weight for three months. He also devel-

oped difficulty of vision in both eyes along with slurring of

speech and right upper limb weakness for ten days. Upon

examination, the patient was obese and hypertensive (blood

pressure: 160/94 mmHg). He had moderate to marked pallor

and mild splenomegaly.

His complete blood count upon evaluation showed a white

blood cell count of 42.2£ 103/mL along with thrombocytopenia

(63£103/mL) and anemia (8.9 g/dL). A peripheral blood smear

(PBS) revealed 76 % blast/abnormal promyelocyte/atypical

monocytoid cells with many showing salmon-pink cyto-

plasmic granules and strong cytochemical myeloperoxidase

staining (Figure 1). In addition, the patient’s coagulation

parameters were deranged with persistently prolonged par-

tial thromboplastin time and hypofibrinogenemia.

Flow cytometric immunophenotyping performed on

peripheral blood revealed 60 % blasts/ abnormal promyelo-

cytes with high side scatter, dim CD45, showing expression of

CD117, CD13, CD33, CD56, and cMPO and negativity for CD34,

and HLA DR. The PBS morphology and immune-phenotyping

were suggestive of a diagnosis of APL.

Following these findings, cytogenetic studies were per-

formed with FISH for the PML-RARa fusion gene using a dual-

color, dual-fusion probe (MetaSystem, Germany). The FISH

result was negative. However, a weak breakpoint signal (one

light green signal) was detected and therefore, FISH was again

performed utilizing the RARa break-apart probe (Kreatek,

Leica, Amsterdam) which revealed an atypical RARa rear-

rangement (1F1 G signal pattern-Figure 2). These findings

hinted towards the possible presence of a variant RARA trans-

location. Qualitative RT-PCR for PML::RARa, BCR1, BCR2 and

BCR3 transcripts was also negative.

A bone marrow aspirate revealed a cellular marrow with

30 % myeloperoxidase positive blasts/ abnormal promyelo-

cytes, many of which showed prominent Auer rods and occa-

sional faggot cells (Figure 1). Overall, the bone marrow

examination findings along with morphologic and immuno-

phenotypic findings (absence of CD34 and HLA-DR) were con-

sistent with APL.

As cytogenetic testing and RT-PCR was unable to pick up

the variant RARA translocation, RNA and DNA sequencing

was performed using the NGS-based comprehensive myeloid

gene panel (Ion Torrent Oncomine Myeloid Research Assay�,

ThermoFisher) assay. The Oncomine Myeloid Research

Assay� is a targeted NGS panel which specifically detects rele-

vant DNA mutations and RNA fusion transcripts associated

with myeloid disorders and comprises 40 key DNA target

genes and 29 driver genes in a broad fusion panel to cover all

the major myeloid neoplasms. RNA sequencing (NGS)

revealed a STAT5B::RARa fusion transcript (6094 read-counts

− Figure 2). Additionally, the DNA sequencing (NGS) showed

the presence of a missense gain-of-function variant in exon 5

of the GATA2 gene (R362 G) [NM_032638.5:c1084C>G;p.

(Arg362Gly)] with a variant allele frequency of 43.75 %.

The patient was started on ATO along with prophylactic

steroid and hydroxyurea. Seven days after admission, the

patient suddenly developed lower gastrointestinal bleeding

and respiratory distress for which an emergency tracheos-

tomy was performed. His condition further deteriorated and

he suffered multiple cardiac arrests and ultimately expired

after repeated attempts at resuscitation.

Discussion

The signal transducer and activator of transcription 5B

(STAT5B) gene is located on chromosome 17q21.2 and belongs

to the Janus kinase (JAK)/STAT signaling pathway. It partici-

pates in intracellular signaling pathways, encodes transcrip-

tion factors and regulates the proliferation and

differentiation in hematopoiesis.11 STAT5B::RARa predomi-

nantly results from an inversion of 17p11.2 and 17q21.2 inter-

stitial micro-deletion. Three different types of STAT5B::RARa

transcripts have been reported, with breakpoints occurring in

exon 14, exon 15, or exon 16 of STAT5B and in exon 3 of the

RARa gene.12 The resulting fusion leads to deregulation of the

JAK/STAT5 signal transducing pathways in leukemic cells

and might explain the unusual features of the STAT5B-RARa

APL variant.13

STAT5B also prevents further differentiation of hematopoi-

etic cells together with the corepressor complex of deacety-

lase. This corepressor complex cannot be released by ATRA

and this may explain the resistance of STAT5B::RARa APL to

ATRA. Few cases have been reported to show an initial

Figure 1 – (a) Peripheral blood smear (PBS): blast/abnormal promyelocytes with salmon-pink cytoplasmic granules (red arrow).

(b) PBS: blasts with strong cytochemical myeloperoxidase staining (black arrow - 40x). (c) Bone marrow aspirate: blasts with

prominent Auer rods and faggot cells. (blue arrow - 40x).
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response to ATRA and ATO, however relapse and extramedul-

lary infiltration is common in most cases. Conventional com-

bination chemotherapy (daunorubicin and cytarabine

(Cytarabine)/idarubicin) also does not fare much better in

these patients, so haemopoietic stem cell transplantation

(HSCT) appears to be the only effective treatment according

to documented reports.10 The optimal timing for HSCT

has been reported to be after achieving first complete

remission (CR).

Resistance to the otherwise highly effective ATRA/ATO

therapy makes it crucial to detect variant RARA gene partners

in APL, especially since they are morphologically and immu-

nophenotypically difficult to distinguish from the classic

t(15;17)(q24.1;21.2) APL (PML::RARa gene fusion).9 In previously

reported cases, most patients received ATRA alone (50 %) or in

combination with ATO/chemotherapy (40 %) as first line treat-

ment, however CR was achieved by only a fraction of these

patients (10 % monotherapy and 40 % combination therapy)

after the first course. The CR rates are markedly reduced in

STAT5B::RARa APL as compared to classical PML::RARa APL

patients (35.3 % and 95 %, respectively). These cases also have

higher relapse and mortality rates as compared to PML::RARa

APL (mortality rates: 47.1 % and 5 %, respectively). Infections,

progressive disease, cerebral hemorrhage and transplant

related complications were the most common causes of

mortality.

Until now, only 17 cases of APL with STAT5B::RARa have

been reported worldwide, making this a very rare entity

(Table 1). To the best of our knowledge, this is the first

reported case from the Indian subcontinent. Most of the pre-

viously reported STAT5B::RARa patients were middle aged

(age range: 17−67 years with a mean age of 39 years). The

majority of the patients were men, with women accounting

for only two cases (11.76 %). More data is required to

Figure 2 –Cytogenetic andmolecular genetic test findings. (a) Fluorescence in situ hybridization (FISH): PML::RARa dual color

dual fusion probe: 2G2R - one weak green signal. (b) FISH:RARa break-apart probe: 1F1 G signal indicating deletion of areas dis-

tal to 3�of RARa gene (interphase nuclei). (c) Integrative Genomics Viewer (IGV v2.11.2) showing STAT5B::RARa gene fusion on

Ion Torrent Oncomine Myeloid Research Assay� (NGS) performed using the Ion GeneStudioTM S5 system.
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determine the significance of the age and gender distribution

of these patients.

Due to the clinical urgency, it is justified to perform a com-

prehensive cytogenetic and molecular profiling of atypical

APL patients utilizing PML::RARa FISH, RARa BAP FISH and

molecular tests such as RT-PCR and NGS-based assays to

detect these cases promptly. NGS-based assays can be uti-

lized to characterize most structural abnormalities through-

out the genome with significantly improved accuracy and

precision as compared to conventional cytogenetics and FISH

tests.26 NGS can effectively detect different RARA fusion part-

ners such as PML, STAT5B, ADAMTS17, NUMA1, FIP 1L1,

ZBTB16, PRKAR1A, BCOR, NPM1, TBL1XR1 and NABP1.

In addition to the STAT5B-RARa fusion, a missense muta-

tion in the GATA2 gene (R362 G) was detected in this patient.

GATA2 mutations usually present as germline variants and

have been known to predispose to AML and myelodysplastic

syndromes.27 GATA2 mutations have also been reported in de

novo AML, especially in adult patients with biallelic CEBPA

mutations.28

By advanced functional and expression studies, it has been

documented that the GATA2 gene is excessively expressed in

PML::RARa-positive pre-leukemic cells. Furthermore, GATA2

gene variants are seen to be persistent in transformed APL

cells. GATA2 gene somatic mutations have also been detected

in APL patients during disease progression. The increased reg-

ulation of GATA2 may help to check the proliferation of PML::

RARa positive leukemic cells, and consequently, inactivation

of the GATA2 gene by mutation (and/or epigenetic silencing)

may accelerate disease progression in APL and in other forms

of AML.29 Due to the demise of our patient, the germline

mutation status of the GATA2 variant could not be

ascertained.

Measurable residual disease (MRD) monitoring has greatly

improved therapeutic decision making in cases of PML-RARa-

positive APL, however, data regarding MRD monitoring in

patients with the STAT5B-RARa rearrangement is very limited.

In developing countries and in centers with limited resources,

MRD monitoring of such rare entities becomes even more

challenging. However, flow cytometry, FISH, RT-PCR and

NGS-based techniques should be explored for MRD monitor-

ing in these patients as this can help to better assess treat-

ment response.

In conclusion, this case describes the significant clinical,

diagnostic and therapeutic differences between STAT5B-RARa

t(17;17) and PML-RARa t(15;17) fusion-positive APL and high-

lights the role of molecular diagnostics, cytogenetics and flow

cytometry in the identification of this rare APL variant. It also

demonstrates the valuable role of NGS-based assays in reach-

ing a definite diagnosis of such a rare malignancy that war-

rants immediate treatment in order to avert mortality.
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