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A B S T R A C T

Sickle cell anemia is a hereditary disease caused by sickle-shaped red blood cells that can

lead to vaso-occlusive crises. Treatment options are currently limited, highlighting the

need to develop new clinical approaches. Studies demonstrated that elevated levels of fetal

hemoglobin (Hb F) are associated with a reduction of mortality and morbidity in sickle cell

anemia patients. In light of this, researchers have been trying to elucidate the transcrip-

tional regulation of Hb F to develop new therapeutic interventions. The present study

aimed to present the main transcription factors of Hb F and discuss the clinical feasibility

of these molecular targets. Two search strategies were used in the PubMed, SciELO, and

LILACS databases between July and August 2023 to conduct this review. Manual searches

were also conducted by checking references of potentially eligible studies. Eligibility criteria

consisted of clinical trials and cohort studies from the last five years that investigated tran-

scription factors associated with Hb F. The transcription factors investigated in at least four

eligible studies were included in this review. As a result, 56 eligible studies provided data

on the BCL11A, LRF, NF-Y, GATA1, KLF1, HRI, ATF4, and MYB factors. The studies demon-

strated that Hb F is cooperatively regulated by transcription factors with the BCL11A factor

appearing to be the most specific target gene for g-globin induction. Although these data

are promising, there are still significant gaps and intervention limitations due to the

adverse functions of the target genes. New studies that clarify the aspects and functionali-

ties of Hb F regulators may enable new clinical approaches for sickle cell anemia patients.
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Introduction

Sickle cell anemia (SCA) is a disease caused by a mutation

that leads to abnormal hemoglobin S (Hb S) production. Hb S
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polymerizes under deoxygenated conditions, causing red

blood cells (RBCs) to take on a sickle shape thereby altering

their characteristics. Sickled RBCs have a short lifespan and,

together with other cell types, can trigger vaso-occlusion of

small blood vessels, resulting in multi-organ dysfunction and

pain episodes typically occurring in the chest, joints, and

limbs. 1-3

The main therapeutic approaches for SCA involve combi-

nations of palliative medications and preventive measures

for symptom management. 1-3 Although bone marrow trans-

plantation is a curative procedure that suspends sickled RBC

production, the limited availability of compatible donors

makes this approach restricted and prone to severe complica-

tions. Hydroxyurea (HU) is a drug that reduces inflammatory

response and improves nitric oxide metabolism, resulting in

blood vessel dilation and reduced vaso-occlusion. In addition,

HU also inhibits Hb S polymerization by inducing fetal hemo-

globin (Hb F) expression. However, the effectiveness of HU is

limited due to its inability to induce pancellular conditions

and significant Hb F expression in RBCs.1-3

The Hb F tetramer structure contains two a- and two g-glo-

bin subunits (a2g2). Thus, Hb F expression depends on g-glo-

bin coding, which occurs through HBG1 and HBG2 genes.

While the fetal-to-adult hemoglobin switching process

represses HBG1/2 genes, specific mutations can cause heredi-

tary persistence of fetal hemoglobin (HPFH), a condition char-

acterized by persistent g-globin expression during adulthood.
4-6

Newborns with SCA and sickle cell patients who co-inherit

HPFH exhibit mild symptoms or remain asymptomatic due to

Hb F production. The therapeutic benefits of Hb F expression

are related to a higher affinity of g-globin to oxygen and lower

Hb S levels. Consequently, Hb S polymerization and the clini-

cal symptoms observed in SCA patients are reduced. 4-6

Given this, genome-wide association studies (GWAS) have

focused on elucidating the regulatory mechanism of g-globin

by identifying transcription factors (TFs) that can be used as

molecular targets to induce therapeutic Hb F expression. Sev-

eral regulatory genes, including BCL11A, LRF, and KLF1, have

been described in the literature. As a result, new treatments

for SCA have been developed and recently approved by the

Food and Drug Administration (FDA). The interventions are

characterized by editing hematopoietic stem cells (HSCs) with

CRISPR/Cas9 to increase Hb F production (Casgevy) or via a

lentiviral vector to increase hemoglobin A (Hb A) levels (Lyfge-

nia). 7-11

In this review, we aimed to identify the main TFs involved

in Hb F regulation and explore the clinical application of these

molecular targets in SCA treatment.

Method

Search strategies

Two search strategies were conducted in the PubMed, SciELO,

and LILACS databases to develop this review. Manual

searches were also conducted by checking references of

potentially eligible studies. The searches were made in July

and August 2023, in English and Portuguese, using the

descriptors ‘Fetal Hemoglobin’, ‘Transcription Factors’, and

‘Hemoglobin Regulation’ and the Boolean operators AND and

OR. The first search strategy aimed at identifying TFs related

to g-globin regulation within a timeframe of ten years (2013

−2023). The second search strategy had two aims: (1) to select

the most investigated TFs involved in Hb F regulation and (2)

to obtain more functional data about these TFs. To achieve

this, all the TFs identified in the first search were searched

independently using the terms ‘Fetal Hemoglobin’ and the

AND operator (e.g. ‘BCL11A’ AND ‘Fetal Hemoglobin’). The

timeframe was reduced to five years (2018−2023) to select the

most recent data. Figure 1 demonstrates the search strategies

employed.

Eligibility criteria

Experimental gene editing studies and cohort studies analyz-

ing HPFH polymorphisms were eligible to identify the TFs.

Studies about regulatory components other than TFs, such as

microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and

RNA Binding Proteins (RBPs), were not eligible. Additionally,

studies that investigate pharmacological agents, physiologi-

cal components other than TFs, and TFs investigated in less

than five eligible studies were also excluded.

Study selection

The results from the first search were exported to the Rayyan

tool and subsequent article selection was based on the title

and abstract. After duplicate studies were removed and eligi-

bility criteria applied, each study was labeled with the

Figure 1 –Flowchart demonstrating the search processes

applied to identify potentially eligible studies.TF: transcrip-

tion factors; SCA: Sickle cell anemia

hematol transfus cell ther. 2024;46(S5):S258−S268 S259



investigated TF and the respective reasons for inclusion or

exclusion. Following this, studies from the second search

strategy were exported to Rayyan, and a similar selection and

labeling process was performed. Finally, included studies

were analyzed by reading the article in full to assess eligibil-

ity. The study selection process is presented in the flowchart

in Figure 2.

Results

The search strategies yielded a total of 918 studies, of which

83 were selected for full-text reading, and 56 were eligible to

be included in this review. Twenty-seven TFs were identified,

of which seven were included in this review as they had been

investigated in at least five eligible studies. Table 1 lists the

selected TFs. When available, the following data was

extracted from eligible studies: TF interaction with Hb F, ther-

apeutic goal, TF physiological mechanism, potential interven-

tion strategies, and editing limitations. The results from data

extraction are summarized in Table 2.

Discussion

Locus control region recruits transcriptional interactions

Hemoglobin (Hb) synthesis is a crucial process in erythropoie-

sis that enables RBCs to bind to oxygen molecules. Hb struc-

ture contains four globin subunits transcribed by genes

located on chromosomes 11 and 16. On chromosome 11, the

HBB locus encodes epsilon (e), gamma (g), delta (d), and beta

(b) globins. In this context, the locus control region (LCR)

interacts with globin genes through chromosomal looping to

recruit transcription interactions at different stages of physio-

logical development. 4,6,12,15

During the fetal period, Hb needs to bind with a higher

affinity to oxygen molecules. Consequently, the LCR interacts

with the HBG1 and HBG2 genes, leading to g-globin synthesis

and Hb F (a2g2) expression. The second switching process

occurs when the LCR moves from HBG1/2 to the HBB gene,

leading to adult hemoglobin (Hb A - a
2
b
2) synthesis through

b-globin coding. Although fetal-to-adult hemoglobin switch-

ing is a natural and fundamental process in human develop-

ment, b-globin expression can be problematic. Individuals

harboring HBB mutations often synthesize abnormal hemo-

globins, causing hematological diseases known as hemoglo-

binopathies. 1,2,4,6,12,14

Transcription factors cooperatively regulate fetal hemoglobin

During Hb F repression, KLF1 and MYB factors positively regu-

late BCL11A and LRF expression. BCL11A and LRF repressors

bind to HBG1/2 promoters and recruit the NuRD complex to

induce chromatin compaction. Doerfler et al.12 demonstrated

that compacted chromatin eliminates the NF-Y and GATA1

activators of HBG1/2 promoters, further contributing to Hb F

silencing (Figure 3). LCR interaction with HBG1/2 genes indu-

ces g-globin expression by inhibiting BCL11A and LRF repress-

ors and enabling NF-Y and GATA1 activators to directly bind

to HBG1/2 promoters. Some studies suggest that GATA1 also

indirectly regulates g-globin through BCL11A and KLF1 inter-

actions, but this transcriptional relationship is not yet fully

understood. 4,6,11,14,15,52

HRI is a kinase that phosphorylates eIF2a to regulate pro-

tein synthesis. In erythropoiesis, when the integrity of the

HBB gene is impaired, HRI inhibits eIF2a phosphorylation,

resulting in ATF4 repression. Boontanrart et al.14 and Huang

et al.57 demonstrated that ATF4 downregulation inhibits

BCL11A expression. Thus, ATF4 repression leads to MYB inhi-

bition and compensatory g-globin synthesis due to b-globin

deficiency (Figure 4). These findings may explain why some

HPFH variants occur through mutations in the HBB gene and

the HB S1L-MYB intergenic region. However, while Huang et

al.57 demonstrated that ATF4 directly interacts with BCL11A to

repress Hb F, Boontanrart et al.14 demonstrated a specific

interaction of ATF4 with MYB to inhibit BCL11A and LRF

repressors. These divergent findings reinforce the need for

further investigation regarding ATF4 molecular interactions.
14,17,56-60

Collectively, these data demonstrate that Hb F is coopera-

tively regulated by transcription interactions, and TFs that

regulate physiological homeostasis can induce Hb F synthesis

when Hb A integrity is impaired. 4,6,12,14,17,52,56-60

Although randomized clinical trials are recommended to

assess the feasibility of therapeutic interventions, only pre-

clinical studies were identified in the literature. Among the

identified studies, only Frangoul et al.3 and Esrick et al.10

explored the feasibility of interventions in human models.

BCL11A was the only TF investigated in human experiments,

demonstrating that the feasibility of various molecular tar-

gets is still uncertain. Despite this, preclinical studies have

provided fundamental results that should be further evalu-

ated to guide new clinical interventions.

KLF1 is a challenging therapeutic target that may act through

divergent mechanisms

KLF1 is a transcriptional activator of Hb F in �198 T > C, �123

T > C, and �124 T > Cmutations. 7,22,43 However, most studies

demonstrated that KLF1 repression increases Hb F levels, sug-

gesting that KLF1 may play roles in both repression and acti-

vation of g-globin. 8,12,18,48 KLF1 polymorphisms are

associated with the rare blood type In(Lu) and other RBC

abnormalities.11,50 Lamsfus-Calle et al.11 demonstrated that

KLF1 cleavage can result in dysregulated genes. Moreover,

studies demonstrated that KLF1 haploinsufficient individuals

exhibit varied Hb F levels, 11,49 possibly due to other regulatory

components associated with KLF1 functionality and/or a spe-

cific mutation inherited by these individuals. Collectively,

studies demonstrated that KLF1 is not yet a safe and effective

therapeutic target for Hb F induction. 11,50

Creating new binding motifs for NF-Y and GATA1 activators

Research has demonstrated that specific HPFH mutations can

create new binding motifs for g-globin activators. 12,52,22 As a

result, researchers have employed gene editing tools to repli-

cate polymorphisms that upregulate NF-Y and GATA1 activa-

tors. Because NF-Y and BCL11A regulate g-globin through
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Figure 2 –Flowchart demonstrating the identifying, screening, and selecting process of the studies.
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divergent pathways, BCL11A editing can promote NF-Y bind-

ing at the CCAAT motif and result in g-globin synthesis. Fur-

thermore, the �110 A > C mutation stabilizes NF-Y at the

CCAAT motif, and the �113 A > G mutation inhibits the

CCAAT motif and creates a new GATA motif to activate Hb F

transcription.12,52 Additionally, the disruption of the GATA

motif impairs the pancellular distribution of Hb F in RBCs sug-

gesting that GATA1may be indispensable for g-globin synthe-

sis. 6,12,15,52

There are still gaps regarding the efficacy and safety of arti-

ficial mutations. Initially, for effective inhibition of Hb S poly-

merization, the artificial polymorphisms must trigger the

pancellular HPFH phenotype. 1-3,52,53 Moreover, the use of

nucleases to induce double-strand breaks may activate p53-

dependent damage responses and lead to the occurrence of

large deletions. 17,21,42 Cheng et al.17, Ravi et al.21 and Antoniou

et al.42 demonstrated that base editors may be safer tools for

inserting polymorphisms into the genome. The safety of the

intervention can also be influenced by transcriptional targets.

While GATA1 dysregulation can cause hematopoietic matura-

tion defects, NF-Y disruptions may impair transcriptional

events. 55,60 Additionally, Woodard et al.43 demonstrated that

transgenic mice may not faithfully replicate the human HPFH

due to species differences in the genome. Overall, the studies

demonstrated that the safety and efficacy of artificial muta-

tions remains uncertain in humanmodels. 17,21,42,43,55,60

MYB editing may impair efficient hematopoiesis

Several cohort studies have identified polymorphisms in the

HB S1L-MYB intergenic region. 14,16,28,37 As previously men-

tioned, the safety and efficiency of artificial mutations are still

uncertain in human models. 11,17,21,42 Although MYB cleavage

can result in Hb F synthesis, studies evidenced that this TF is

crucial for hematopoietic integrity. Clarke et al.17 demon-

strated that MYB haploinsufficiency in mice results in various

hematological disorders, suggesting that MYB is not a safe

molecular target for clinical applications. However, Boontan-

rart et al.14 demonstrated that editing the HB S1L-MYB inter-

genic region results in Hb F expression because it prevents

ATF4 binding, suggesting that ATF4may be an efficient molec-

ular target to inhibitMYB and activate g-globin transcription.

HRI-elF2a-ATF4 pathway integrity is essential to stress

erythropoiesis response

ATF4 repression results in Hb F synthesis by inhibiting MYB

and BCL11A. Because ATF4 is regulated by the erythroid-spe-

cific kinase HRI, this approach may offer a more precise way

to repress MYB. 14,56-59 However, there are divergences

between the studies by Boontanrart et al.14 and Huang et al.57

regarding the mechanism of action and the effectiveness of

ATF4 as a molecular target. While Huang et al.57 demon-

strated that ATF4 interacts directly with BCL11A and is not an

effective molecular target in mice, Boontanrart et al.14 dem-

onstrated that ATF4 binds to the HB S1L-MYB intergenic region

and is an effective target in human cells. These findings high-

light the need for further studies to elucidate the functionality

and effectiveness of ATF4.

Because b-globin deficiency results in g-globin expression

due to stress erythropoiesis, artificial HBB polymorphisms

may also be effective to trigger the HRI-eIF2a-ATF4 pathway.

However, HBB deficiency is related to hematological disorders

such as b-Thalassemia. Grevet et al.56 demonstrated that HRI

depletion results in Hb F expression, possibly due to subse-

quent inhibition of ATF4. However, Peslak et al.56 demon-

strated that >80% of HRI cleavage is necessary to achieve

elevated Hb F levels. Although the study indicated that HRI

depletion is well-tolerated under homeostatic conditions, it is

crucial to assess HRI deficiency in pathological conditions,

given that this kinase functions primarily during stress

events. Zhang et al.59 demonstrated that, although healthy

mice exhibit normal erythropoiesis, HRI depletion under iron

deficiency conditions disturbs erythropoiesis. The study also

revealed that ATF4 plays a crucial role in reducing oxidative

stress, and ATF4 depletion is associated with neonatal mouse

mortality. These data support the hypothesis that inhibiting

homeostatic regulators may be a risky strategy, especially in

individuals with hemoglobinopathies.

LRF cleavage can compromise adverse physiological processes

Polymorphisms that disrupt LRF binding motifs are associated

with Hb F expression. 7,17,18,25,42 Combining LRF repression with

the recruitment of a transcriptional activator can trigger higher

levels of Hb F. These findings have been validated by studies

Table 1 – Transcription factors with the number of eligi-
ble studies that provided data.

Transcription factor Eligible studies

BCL11A 41

MYB 14

KLF1 12

LRF/ZBTB7A 9

GATA1 8

ATF4 5

NF-Y 5

ZNF410 3

NFIX 3

NFIA 3

NRF2 2

TAL1 1

SOX6 1

CTCF 1

NonO 1

LDB1 1

ETO2 1

TEAD4 1

KLF4 1

HIC2 1

YY1 0

FOXO3 0

PAX1 0

NF-E2 0

TFCP2 0

RUNX1 0

GATA2 0

Note: Several studies, especially cohort studies, analyze multiple

transcription factors simultaneously.
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that replicated the �198 T > C mutation, which results in LRF

repression and creates a new bindingmotif for KFL1. 7,21,42

LRF and BCL11A cooperatively regulate Hb F through similar

mechanisms. However, the diverse physiological functionality

of LRF implies that BCL11A may be a safer target. Ravi et al.21

showed that LRF cleavage can result in erythroid differentiation

defects. Furthermore, Bagchi et al.3
7

demonstrated that the

integrity of erythroid cells remained unaffected after BCL11A

editing, whereas LRF cleavage resulted in erythroid differentia-

tion defects. These data demonstrate that LRF is not currently a

safe molecular target and that future studies should focus on

developingmore specific strategies to inhibit LRF functionality.

BCL11A is the safest molecular target to induce HB F

expression

The BCL11A gene encodes a TF especially crucial in the brain,

B-cell development and the fetal-to-adult hemoglobin switch.

Individuals harboring BCL11A mutations can express Dyas-

Logan syndrome, a delayed intellectual disorder associated to

HPFH. 27,45 Despite the limitations, BCL11A is a promising

molecular target to induce g-globin expression due to the pos-

sibility of specifically inhibiting this gene function in the fetal-

to-adult Hb switching process. 3,4,11,12,21,23,33 Insertions or

deletions at the TGACCA site of HBG1/2 promoters or in

BCL11A erythroid-specific enhancers proved to be highly spe-

cific editing strategies for Hb F synthesis. Editing BCL11A ery-

throid-specific enhancers has been applied in rhesus

monkeys and humanmodels 3,10,33, while editing the TGACCA

motif has only been employed in vitro and in mice. 4,6,11,12,21

Although the sample of clinical experiments is still small,

strategically inhibiting BCL11A reduces SCA symptoms with-

out affecting other physiologic functionalities of this TF. How-

ever, clinical experiments also demonstrated that

myeloablative chemotherapy that precedes ex vivo interven-

tions is highly toxic for patients. 3,11

Table 2 – Transcription factors included in this review.

transcription

factor

Hb F Interaction Therapeutic goal Physiological

mechanism

Possible intervention

strategies

Limitations References

BCL11A Directly

represses Hb F Downregulate

- Binds to the HBG1/2

promoters

(TGACCA site)

- Recruits the

NuRD complex

- Interacts with

NF-Y, GATA1, MYB

and/or ATF4

- INDELs in TGACCA

motif

- INDELs in HB S1L-

MYB intergenic

region

- BCL11A,

KLF1 and/or ATF4

cleavage

- New binding

motifs for NF-Y

and GATA1 (HPFH

mutations)

Required in brain

and B-cell

development

3,4,6,8,10-45

MYB Indirectly

represses Hb F

Downregulate - Positively regulates

BCL11A and LRF

- Interacts with

ATF4

- INDELs in HB S1L-

MYB intergenic

region

- MYB, ATF4 and/or

HRI cleavage

Crucial in

hematopoietic

cells

14,16-18,26-

30,35,36,38, 46,47

KLF1 Indirectly

represses

and/or directly

promotes Hb F

production

Downregulate

and/or

Upregulate

Positively regulates

BCL11A and LRF

and/or is potenti-

ated by HBG1/2

mutations

KLF1 cleavage or

new KLF1 binding

motifs (HPFH

mutations)

Crucial in

erythropoiesis

9,11,16,17,

21,29,30,40, 42,48-

50

LRF/ZBTB7A Directly

represses Hb F

Downregulate - Recruits the NuRD

complex

- Regulated by

KLF1 and MYB

- KLF1 and/or

ZBTB7A cleavage

- INDELs in HB S1L-

MYB intergenic

region

Regulates several

physiologic

processes

8,17,18,21,

25,28,37,42, 51

GATA1 Directly and indi-

rectly promotes

Hb F

expression

Upregulate - Interacts with

BCL11A

- Binds to HBG1/2

promoters

New GATAmotifs

(HPFHmutations)

Crucial in

hematopoietic

cells

3,12,21,22, 52-55

ATF4 Indirectly

represses Hb F

Downregulate - Positively regulated

by HRI kinase

- Binds to the HB

S1L-MYB inter-

genic region and/

or interacts with

BCL11A

- HBB, HRI, and/or

ATF4 cleavage

- INDELs in HB S1L-

MYB intergenic

region

Crucial in cellular

stress response

and

erythropoiesis

14,56-59

NF-Y Directly pro-

motes

Hb F

expression

Upregulate - Binds to HBG1/2

promoters (CCAAT

motif)

- Interacts with

BCL11A

- New CCAATmotifs

- BCL11A cleavage

- INDELs in

TGACCAmotif

Regulates several

physiological

processes in

mammals

6,12,15,54,60
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BCL11A is the exclusive molecular target employed in

human experiments due to its effectiveness and safety

results in experimental studies. 3,4,6,10-12,20,22,31,37 Despite the

diverse functionalities exhibited by all the TFs, strategically

editing BCL11A was the sole intervention that did not affect

parallel physiological events. 3,9,11,32,37 The aspects

highlighted by studies reinforce that BCL11A stands out as the

safest and most effective molecular target for Hb F synthesis.

Nevertheless, it is crucial to emphasize that implications

related to the cerebral and lymphocytic functionality of

BCL11A underscore the need for meticulous editing analyses

to enable clinical applications. 3,4,11-13,22,24

Delivery methods

Gene editing is revolutionary for new therapeutic approaches.

However, it is still necessary to develop safe and effective

methods to deliver editing tools into host cells. Preclinical

studies have employed ex vivo interventions, where HSCs are

extracted, gene-edited, and subsequently reintroduced into

Figure 3 –Transcriptional repression of Hb F: illustration demonstrating locus control region (LCR) inducing fetal-to-adult

hemoglobin switching through chromosomal looping.

Figure 4 –Transcription Activation of Hb F: stress erythropoiesis and a locus control region (LCR) performing chromosomal

looping to attract GATA1 and NF-Y activators.
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the patient after myeloablative chemotherapy. Although ex

vivo interventions are effective and provide greater control

over editing procedures, cell extraction and myeloablation

are invasive and potentially toxic. In contrast, in vivo interven-

tions offer a safer, more accessible, and simpler alternative, as

they eliminate the requirement for myeloablation and HSC

harvesting. (Figure 5) 3,10,37,41, 61-63

The feasibility of clinical approaches depends on the strat-

egy applied to introduce editing tools into host cells. Microin-

jection of the components or the insertion of electrical pulses

into cells (electroporation) are highly effective physical meth-

ods often employed in genetic interventions. Although Fran-

goul et al.3 demonstrated that electroporation is efficient in

human models, it is known that this method can be toxic to

HSCs. Furthermore, the viability of physical methods may be

restricted to ex vivo interventions, making biological methods

a promising alternative for in vivo implementation. Lentivirus,

adenovirus, and adeno-associated viruses (AAV) are com-

monly employed in biological delivery methods, particularly

in vivo genetic interventions. The robust infection capacity of

these viruses enhances their effectiveness as carriers of

genetic tools into target cells, and several studies have under-

scored the efficiency of viral vectors in genetic interventions.
9,37,41,61-63 However, each viral method presents specific chal-

lenges and advantages. AAV, for example, has a reduced

packaging capacity, which can be a challenge to deliver

CRISPR/Cas9 ribonucleic complexes into HSCs. Nevertheless,

a major concern related to viral vector delivery methods is

associated to the potential risks of carcinogenesis and immu-

nogenicity. 9,61-63

Multiple studies have explored non-viral biological deliv-

ery methods and assessed their safety and efficacy in host

cells. 61-63 Lattanzi et al.62 demonstrated that non-viral ribo-

nucleoprotein delivery may be a non-toxic and highly effec-

tive delivery method. Similarly, Cruz 61 demonstrated that

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles exhibit com-

parable efficiency to viral vectors. However, the study also

underscored certain limitations, including the challenge of

compounds reaching the bone marrow in in vivo interven-

tions. These findings indicate that non-viral biological deliv-

ery has the potential to be safer than viral methods, but

further efforts are required to optimize the efficiency of non-

viral approaches. 61-63

Finally, it is crucial to empathize that SCA has a high inci-

dence in low-income countries. These aspects underscore the

importance of developing cost-effective and simpler

approaches. Although most preclinical studies have utilized ex

vivo interventions with physical or viral delivery methods, it is

essential to optimize in vivo non-viral delivery to provide more

accessible and economical interventions to patients. 1-4,10,20,40,41

Future perspectives

Several studies have demonstrated that increasing Hb F levels

is effective to inhibit the sickling of RBCs. 1-6,8,9,10 Conse-

quently, TFs that regulate Hb F expression emerge as poten-

tial molecular targets to develop new treatments for SCA.

Preclinical studies have demonstrated the promising poten-

tial of gene therapy in the g-globin regulation context. 1-

12,14,20,21 Additionally, TFs can also be useful in the explora-

tion and development of new drugs for SCA. Studies have

explored the combination of gene editing and pharmacologi-

cal agents to achieve even higher Hb F levels, demonstrating

that g-globin transcriptional regulation can lead to various

therapeutic approaches.58 Although more evidence is needed

to assess the safety of interventions, the future of new thera-

pies for SCA looks promising. New studies should focus on

optimizing current therapeutic strategies to develop safer,

effective, and accessible interventions. The evidence resulting

from these studies may lead to a broad range of therapeutic

options for SCA patients.

Limitations

This study focuses on discussing the main transcription regu-

lators of Hb F, excluding different regulatory components and

Figure 5 –Ex vivo and In vivo interventions employed for gene editing Created with Biorender.com.
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those with limited or obsolete data. Gaps and divergences

were identified during the literature review. While some stud-

ies suggests that KLF1 is a transcriptional activator of Hb F
22,43,52, others demonstrated that KLF1 positively regulates

BCL11A and LRF to repress Hb F. 8,11,18,48 It is also not

completely clear how KLF1, GATA1 and MYB factors interact

with each other and other TFs to regulate Hb F. 13,15,54 In addi-

tion, stress erythropoiesis has demonstrated to be an elusive

mechanism, as ATF4 molecular interactions are still not fully

understood. 14,56-60 It was also noted that some cohort studies

provided limited data, possibly due to the small sample of

patients analyzed. 16,29 Finally, it is important to note that

transgenic mice have significant differences in the HBB locus

compared to the human genome. Woodard et al.43 demon-

strated that this physiological limitation can prejudice the

analysis of editing strategies and the understanding of globin

regulation.

Final considerations

The physiological mechanism underlying Hb F expression

provides valuable insights to develop new therapeutic

approaches for hemoglobinopathies, especially SCA.

Although there is a scientific consensus regarding BCL11A,

there are still implications related to editing limitations and

elusive transcriptional interactions. Further studies should

focus on elucidating the gaps present in the fetal-to-adult

hemoglobin switching process and in the development of

new delivery methods to enable accessible and safer inter-

ventions for patients.
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