Case Report

Compound heterozygote of Hb DIran [HBB: c.67G>C, β 22(B4) Glu>Gln] with β0-thalassemia [cds 41/42 (-CTTT)] from Eastern India

Pradeep Kumar Mohantya, Satyabrata Mehera, Snehadhini Dehurya, Subhra Bhattacharyaa, Kishalaya Dasaa, Siris Patela, Biswanath Sarkarb,∗

a Veer Surendra Sai Institute of Medical Science and Research (VIMSAR), Burla, Sambalpur, Odisha, India
b Anthropological Survey of India, Kolkata, India

A R T I C L E I N F O

Article history:
Received 1 September 2017
Accepted 21 September 2017
Available online 1 December 2017

Introduction

Hereditary hemoglobinopathies, the most common monogenic hemoglobin (Hb) disorders, result in a variety of clinical consequences. It has been observed that various Hb variants and thalassemias are found common to specific ethnic groups and regions. Hb DIran is a structural Hb variant resulting from the substitution of glutamine with glutamate at codon 22 (GAA>CAA, Glu>Gln) of the beta globin gene. This Hb variant was first reported by Rahbar in 1973 in a family from the central part of Iran.1 A deletion of four bases in codon 41/42 (-CTTT) is a rare β0-thalassemia mutation reported in India with a prevalence of 3–15%.2 The present report describes a rare combination of these two mutations for the first time in India.

Case report

A 45-year-old Sikh female from Sundergarh district of Odisha, India with a family history of β-thalassemia attended the Sickle Cell Institute, VIMSAR, Burla to screen her status. She was asymptomatic and had no history of blood transfusion or vaso-occlusive crisis. Ultrasonographic examination revealed normal spleen and liver. The various investigations of the proband and her daughter, including a complete blood count and biochemistry, are shown in Table 1. As evident, the index case had features suggestive of microcytic hypochromic anemia (mean corpuscular volume: 58.7 fl and mean corpuscular hemoglobin: 17.8 pg). An iron profile study indicated possible iron overload [iron 5.027 mg/dL (reference range – RR: 0.005–0.175 mg/dL); ferritin: 138.7 µg/L (RR: 20–200 µg/L) and transferrin: 490.05 mg/dL (RR: 212–360 mg/dL)].
Because of the endemcity of the sickle cell hemoglobinopathy and its combination with β-thalassemia in this region, the sickling test and alkaline agarose gel Hb electrophoresis were performed; the sickling test was negative and a single band in the Hb S/D position was observed by Hb electrophoresis (pH-8.6). Cation exchange high performance liquid chromatography (CE-HPLC) was performed using the VARIANT-II hemoglobin testing system (Bi-Rad Laboratories, Hercules, CA, USA) which showed a prominent peak in the Hb A$_2$ window (3.27–3.83 as per the manufacturer’s guide lines in the operating software): Hb Deer Lodge, Hb Lepore, Hb D$^{\text{Iran}}$, Hb E-Saskatoon, Hb G-Coushatta, Hb D-Granada, Hb G-Taipei and Hb Bury) and one β^0-thalassemia mutation [Codon 22 (G>T); GAA(Glu)>T AA (stop codon)] have been reported involving this codon. In Hb D$^{\text{Iran}}$, the change of glutamate to glutamine leads to an overall change of charge from negative to positive resulting in a protein that migrates to the position of Hb S in alkaline Hb electrophoresis.\(^6\)\(^{-10}\) This rare variant has heat stability with no effect on oxygen equilibrium, intracellular 2,3-diphosphoglycerate or the Bohr effect.\(^10\) The homozygous state of Hb D$^{\text{Iran}}$ reveals a milder phenotype even when Hb D$^{\text{Iran}}$ co-inherits with β^0-thalassemia.\(^5\)\(^{-9}\) The present case agrees with this as evidence from the clinical and hematological investigations show. Although Hb D$^{\text{Iran}}$ in combination with β-thalassemia produces a moderate microcytic and hypochromic red cell picture that is not transfusion dependent, the appearance of Hb D$^{\text{Iran}}$ in the position of Hb S in alkaline agarose gel electrophoresis can lead to significant confusion and might falsely be reported as a sickle cell hemoglobinopathy unless a sickling test and HPLC are read together with these findings. Hb S can easily be distinguished from Hb D$^{\text{Iran}}$ by performing CE-HPLC.

Reportedly in CE-HPLC, nine abnormal Hbs elute in the Hb A$_2$ window (3.27–3.83 as per the manufacturer’s guidelines in the operating software): Hb Deer Lodge, Hb Lepore, Hb D$^{\text{Iran}}$, Hb E, Hb Hamadan, Hb Osu-Christiansborg, Hb Tianshu, Hb G Honolulu and Hb G Copenhagen. Among these, Hb Deer Lodge, Hb Lepore and Hb D$^{\text{Iran}}$ elute prior to the standard RT of Hb A$_2$ (3.6 min) while others have higher RT to that of Hb A$_2$. Interestingly, Hb Lepore has the lowest average quantity (7–15%) followed by Hb G Honolulu (about 15% of total hemoglobin quantity) and Hb E (about 30% of total hemoglobin in absence of α-thalassemias). All the other variants eluting in the Hb A$_2$ window have variant hemoglobin quantities higher than 30% on average under heterozygous conditions, making it difficult to distinguish in HPLC. Amongst these, Hb D$^{\text{Iran}}$ has been reported to elute in this window at

Table 1 – Hematological and biochemical indices of proband and her daughter.

<table>
<thead>
<tr>
<th></th>
<th>Unit (SI)</th>
<th>Proband</th>
<th>Daughter</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood cell count</td>
<td>×109/L</td>
<td>7.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Red blood cell count</td>
<td>×1012/L</td>
<td>5.67</td>
<td>5.07</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>g/L</td>
<td>10.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>%</td>
<td>33.3</td>
<td>33.8</td>
</tr>
<tr>
<td>Mean corpuscular volume</td>
<td>fl</td>
<td>58.7</td>
<td>66.7</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin</td>
<td>Pg</td>
<td>17.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Mean corpuscular hemoglobin concentration</td>
<td>g/dL</td>
<td>30.3</td>
<td>29.3</td>
</tr>
<tr>
<td>Platelet count</td>
<td>×109/L</td>
<td>169</td>
<td>171</td>
</tr>
<tr>
<td>Serum creatinine</td>
<td>µmol/L</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Aspartate transaminase</td>
<td>U/L</td>
<td>12.7</td>
<td>15.3</td>
</tr>
<tr>
<td>Alanine transaminase</td>
<td>U/L</td>
<td>12.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>µmol/L</td>
<td>0.03</td>
<td>0.34</td>
</tr>
<tr>
<td>Lactate dehydrogenase</td>
<td>U/L</td>
<td>198</td>
<td>189</td>
</tr>
<tr>
<td>Iron</td>
<td>µmol/L</td>
<td>5.027</td>
<td>5.258</td>
</tr>
<tr>
<td>Transferrin</td>
<td>g/L</td>
<td>490.05</td>
<td>462.09</td>
</tr>
<tr>
<td>Ferritin</td>
<td>pmol/L</td>
<td>138.7</td>
<td>111.6</td>
</tr>
</tbody>
</table>

Discussion

The Hb D$^{\text{Iran}}$ trait and homozygous cases have been reported earlier.\(^4\)\(^{-5}\) However, few studies have reported compound heterozygotes of Hb D$^{\text{Iran}}$ with other Hb variants like Hb S and Hb β^0-Punjab, β^+/thalassemia IVS1–5 (G>C), β^0-thalassemia (619 bp-deletion) and undefined β-thalassemia from India and Pakistan. Various studies have reported that the quantity of Hb D$^{\text{Iran}}$ eluting in the Hb A$_2$ window in HPLC varies from 36.0 to 47.7% in a heterozygous condition, while in compound heterozygous states, the quantity varies between 47.3 and 94.4% (with Hb D$^{\text{Punjab}}$, Hb S, β-thalassemia with the 619 bp deletion mutation and beta thalassemia with unknown mutation).\(^6\)\(^{-10}\) Almost all these cases were mild in presentation with concomitant anemia.

Codon 22 (GAA), is a mutational hotspot in exon I of the human β-globin gene, although it does not take part in α-β or protein-heme interactions, as this is an external residue. This change, however, results in a large shift in the charge distribution of the protein from negative to positive, which exhibits a small effect on the α-β interactions. However, in the context of the C-terminal region, this change results in an overall change of charge from negative to positive resulting in a protein that migrates to the position of Hb S in alkaline Hb electrophoresis.\(^1\)\(^{-10}\) The homozygous state of Hb D$^{\text{Iran}}$ reveals a milder phenotype even when Hb D$^{\text{Iran}}$ co-inherits with β^0-thalassemia.\(^5\)\(^{-9}\) The present case agrees with this as evidence from the clinical and hematological investigations show. Although Hb D$^{\text{Iran}}$ in combination with β-thalassemia produces a moderate microcytic and hypochromic red cell picture that is not transfusion dependent, the appearance of Hb D$^{\text{Iran}}$ in the position of Hb S in alkaline agarose gel electrophoresis can lead to significant confusion and might falsely be reported as a sickle cell hemoglobinopathy unless a sickling test and HPLC are read together with these findings. Hb S can easily be distinguished from Hb D$^{\text{Iran}}$ by performing CE-HPLC.
Peak name	**Calibrated area %**	**Area %**	**Retention time (min)**	**Peak area**
Unknown | --- | 0.3 | 0.96 | 6736
F | 1.0 | --- | 1.09 | 17882
Unknown | --- | 0.8 | 1.60 | 16390
P3 | --- | 4.0 | 1.73 | 78869
A0 | --- | 4.6 | 2.20 | 90859
Unknown | --- | 1.0 | 2.50 | 20501
A2 | 82.8* | --- | 3.57 | 1740824

Total area: 1,972,061

F concentration = 1.0 %
A2 concentration = 82.8* %

*Values outside of expected ranges

Analysis comments:

![Figure 1 – CE-HPLC showing characteristic peak of HbD_{Iran}/β° thal [cds 41/42 (-CTTT)].](image)

Further, as Hb D_{Iran} elutes in the Hb A₂ window in HPLC masking elevated Hb A₂, it becomes difficult to suspect the presence of β-thalassemia and direct gene sequencing needs to be performed. To the best of our knowledge, this is the first report of Hb D_{Iran} with β°-thalassemia [cds 41/42 (-CTTT)] reported from Odisha, India.

Funding

The study was performed under the Odisha Sickle Cell Project, funded by the National Health Mission of India, Odisha, India.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgement

We acknowledge the support from Prof. Bijaya Kumar Dutta, Dean & Principal, Veer Surendra Sai Institute of Medical Science and Research (VIMSAR), Burla, Odisha. The authors are indebted to late Dr. Dilip Kumar Patel, Ex-Associate Professor,
Department of Medicine, Veer Surendra Sai Medical College (now VIMSAR), Burla, Sambalpur, Odisha and Ex-Project Coordinator, Odisha Sickle Cell Project (NHM, Odisha) for his inestimable contribution to this study. The authors acknowledge the support of the Director, Anthropological Survey of India, Ministry of Culture, Government of India for sanctioning the collaboration program (Vide letter No. 18-22/PMI/2011, dated June 15 2013).

REFERENCES